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Abstract—Maximum Likelihood Estimation can provide an
accurate estimate of activity distribution for Positron Emission
Tomography (PET) and Single Photon Emission Computed
Tomography (SPECT), however its unconstrained application
suffers from dimensional instability due to approximation of
activity distribution to a grid of point processes. Correlation
between the activity distribution and the underlying tissue
morphology enables the use of information from an intra-
subject anatomical image to improve the activity estimate.

Several approaches have been proposed to include anatomical
information in the process of activity estimation. Methods based
on information theoretic similarity functionals are particularly
appealing as they abstract from any assumption about the
nature of the images. However, due to multiplicity of the
similarity functional, such methods tend to discard boundary
information from the anatomical image.

This paper presents an extension of state of the art methods
by introducing a hidden variable denoting tissue composition
that conditions an entropic similarity functional. This allows
one to include explicit knowledge of the MRI imaging system
model, effectively introducing additional information.

The proposed method provides an intrinsic edge-preserving
feature, it outperforms conventional methods based on Joint
Entropy in terms of bias/variance characteristics, and it does
not introduce additional parameters.

I. INTRODUCTION

Radio-tracer concentration in PET and SPECT has been
shown to correlate with MRI and CT anatomical images
in several brain and cardiac imaging studies [1], [2],
[3]. Information from the anatomical image can thus be
embedded in the reconstruction process in order to improve
the estimate of radio-tracer activity. This can be achieved
with a Maximum A Posteriori (MAP) approach for estimation
of the activity, where the prior activity distribution is inferred
from the anatomical image. While Maximum Likelihood
(ML) estimation alone provides accurate estimation of the
activity distribution for Emission Tomography, it suffers
from dimensional instability due to approximation of the
activity spatial density to a grid of point sources [4], [5],
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Fig. 1. Activity phantom (bottom) and co-registered T1-weighted MRI
image of the same subject (top). Both images are generated synthetically
from averaged partial volume segmentation of 27 MRI images of the same
subject (BrainWeb [9]).

[6]. Anatomical priors have been shown to be effective
in overcoming dimensional instability as they act as
regularization terms. Furthermore, the information provided
by the anatomical images allows to get around the intrinsic
resolution associated with Poisson emission statistics [7],
[8]. Multimodality-aided image reconstruction can thus
in turn reduce radio-pharmaceutical dose, or equivalently
produce more accurate images with unchanged photon counts.

Since its commercial introduction by General Electric
in 1999, SPECT/CT has quickly become the standard
in clinical practice allowing patient specific attenuation
correction. Hybrid PET/MRI and SPECT/MRI imaging
systems are currently under development [10], [11]. These
will enable new biological and pathological analysis tools
for clinical applications and preclinical research [12], [13],
by exploiting the correlation between the two modalities.
However, loose correlation between observable changes in
tissue composition and areas of increased (hot spots) and
decreased (cold spots) activity has to be taken into account.
The problem has long been studied and several approaches
have been proposed, based on different assumptions about
the correlation between the two images, the great majority
falling within three categories: methods that favor a piecewise
uniform reconstruction by segmenting the anatomical image
and subsequently applying a smoothing prior within each
identified region [14], [15]; methods that explicitly extract



boundary information from the anatomical image and relax
the effect of a global smoothing prior across the identified
edges [16], [3]; methods based on information theoretic
similarity functionals [17], [18], [19], [20], [4].

The last category has proven particularly interesting,
as the involved functionals do not require either explicit
segmentation nor boundary extraction from the anatomical
image, steps that are inherently sensitive to noise because
of selection of high frequency components of the image.
Information theoretic similarity functionals provide the
means to assess the structural similarity between two images
in terms of common information content, bypassing the
incommensurate relationship - due for example to multi-
modality - between intensity of corresponding areas in the
two images[21], [22]. The introduction of anatomical prior
information via these functionals has been shown to improve
the a posteriori estimate of activity, by reducing its bias and
sensitivity to noise [23].

Tang and Rahmim [17] and Somayajula et al. [18]
have explored the use of Joint Entropy (JE) as a similarity
functionals for multi-modal reconstruction in PET. Somayajula
et al. [18] have shown that JE provides best results in terms
of bias/variance characteristics when compared with other
information theoretic similarity functionals. Tang and Rahmim
[17] have shown that MAP reconstruction with a prior based
on Joint Entropy improves the bias/variance characteristics
when compared to other methods based on segmentation
and extraction of boundaries; furthermore tuning of the
algorithm depends only on one parameter - the importance
of the prior - which can be optimized on synthetic data.
However, as pointed out by Somayajula et al. [18], a spatial
reordering of corresponding pairs of voxels in the two images
would produce identical Joint Entropy values, thus Joint
Entropy minimization presents multiple solutions. Because of
multiplicity of the Joint Entropy, the maximum a posteriori
activity estimate depends on the iterative scheme and the
initial object estimate with which the algorithm begins.
Usually this initial estimate is a simple uniform field, so the
final image is biased towards uniformity, with lack of edge
preservation. In order to overcome this drawback Somayajula
et al. [18] introduced a scale-space approach, where activity
with boundaries similar to the anatomical image are favored
by minimizing the JE between the Laplacian of the images.
However the introduction of additional parameters complicates
the tuning of the reconstruction process.

The proposed work is besed on the Maximum A Posteriori
activity estimation with Joint Entropy based prior, as put forth
by Somayajula et al. [18] and Tang and Rahmin [17], where
Joint Entropy measures the similarity between activity and the
anatomical image.

Here the Joint Entropy similarity functional is extended to
Conditional Joint Entropy, in order to take into account depen-
dence of the two images on the underlying tissue composition.
Introducing a latent variable that takes values in a discrete set
denoting tissue type, Joint Entropy conditioned to this variable

expresses the amount of information in common between the
two images within each region of tissue. This method allows to
model explicitly the probabilistic dependence between tissue
fractional content and anatomical image, effectively adding
information in the reconstruction process.

II. METHODS

Let the radio-pharmaceutical activity within the region of
interest of the patient’s body be a continuous function de-
noted by ỹ. In order to readily discretize the reconstruction
algorithm, it is convenient to imagine that the activity is in
the first place discrete in space [24]. Let us approximate ỹ
by a set of point sources y = yb, b = 1, .., Nb displaced on a
regular grid. Note at this point that an iterative algorithm will
try to find a discrete activity that explains observations due
in reality to a continuous distribution, causing a convergence
problem often referred to as dimensional instability [4].

As each point source emits radiation at an average rate yb
proportional to the local density of radio-tracer and emission
events in a same voxel are not time correlated, the number of
emissions in the unit time is a Poisson distribution of expected
value yb. The geometry of the system and attenuation in the
patient determine the probability pbd that a photon emitted
in b is detected at detector pixel d. From the sum property of
the Poisson distribution, the photon count in d has Poisson pdf
with expected value

∑
b pbdyb. Given activity y, the probability

to observe counts z is

p(z|y) =
Nd∏
d=1

P(
∑
b

pbdyb, zd) (1)

When counts z are observed, the probability that they were
caused by activity y is expressed by the Bayes formula, for
the general case where spatial distributions of activity are not
all considered equally probable a priori.

ŷ = argmax
y

p(z|y)p(y)
p(z)

(2)

The prior probability p(y) is defined in section B in terms
of similarity of y with the anatomical image, after introduction
of a probabilistic model of the MRI imaging system in section
A. Section C shows a MAPEM algorithm for maximization of
2.

A. Tissue classification

Let b ∈ {1, 2, · · · ,m} index the m voxels of an anatomical
image generated by n tissue types k ∈ {1, 2, · · · , n}. Assum-
ing each tissue class in the image can be described as having
Gaussian distributed intensities with mean µk and variance
σ2
k, the probability to observe intensity xb in a voxel b that is

known to belong to tissue type k is

p(xb|k) = G
(
xb − µk

σ2
k

)
(3)

Thus, the probability to observe intensity xb in a randomly
selected voxel b is



p(xb) =

Nk∑
k=1

p(xb|k) p(k) =
Nk∑
k=1

p(k) G
(
xb − µk

σ2
k

)
(4)

where p(k) is a prior probability dependent on the overall
mix of tissue types. Under the Bayesian formulation, the
probability that the observed intensity xb is determined by
tissue type k is:

p(k|xb) =
p(xb|k) p(k)

p(xb)
(5)

Equations (3-5) can be regarded as a Mixture of Gaussians
(MOG) model where pk is normally referred to as the mixing
coefficient and p(k|xb) as the partial membership.

Using Gaussian functions, p(k|xb) represents complete-data
sufficient statistics as it is defined on a linear exponential
base [25]. The Expectation Maximization algorithm can thus
be adopted to iteratively update an estimate of p(k), µk and
σk from the image intensities [26].

(E)

p̂(k|xb)
(n+1) =

p̂(k)(n) G

(
xb − µ̂

(n)
k

σ̂
(n)
k

)
Nk∑
k=1

p̂(k)(n) G

(
xb − µ̂

(n)
k

σ̂
(n)
k

) (6)

(M)

p̂(k)(n+1) =
1

Nb

Nb∑
b=1

p̂(k|xb)
(n+1) (7)

µ̂
(n+1)
k =

1

Nb

Nb∑
b=1

p̂(k|xb)
(n+1) xb

p̂(k)(n+1)
(8)

σ̂
(n+1)
k =

1

Nb

Nb∑
b=1

p̂(k|xb)
(n+1) (xb − µ̂

(n+1)
k )2

p̂(k)(n+1)
(9)

After convergence to the most likely parameters, equation 6
represents the probability (given the parameters) that k is the
underlying tissue that generated intensity xb in a voxel b.

B. Similarity functional

Let X and Y represent random processes that generate the
anatomical and functional images respectively. Furthermore,
assume that the relationship between the random processes X
and Y is dependent on a hidden variable K representing a
discrete underlying tissue type k. The probability to observe
intensity x and activity y at a random voxel location b can be
estimated by assembling a 2D histogram with the occurrence
of (x, y) pairs from the images. Adopting a non-parametric
estimation method based on Gaussian Parzen Windows, the
estimate of the joint pdf p(x, y) is differentiable with respect
of the samples xb and yb [27]. Adopting a Gaussian kernel

Fig. 2. Partial membership: in each of the four images, the intensity
associated with a pixel represents the probability that that pixel belongs to
the tissue associated with the image. Four tissue types are assumed.

with bandwidth (σx, σy), the Parzen Windows estimate of the
joint pdf is

p̂(x, y) =
1

Nb

Nb∑
b=1

G
(
x− xb

σ2
x

)
G
(
y − yb
σ2
y

)
(10)

The previous section described a generative model of the
MRI imaging system and an algorithm for estimation of the
parameters of the model. The generative model provides, given
the intensity of a voxel of the MRI image alone, an estimate
of the probability that the voxel is an expression of any of
the Nk tissue types k. The probability to observe (x, y) in a
random voxel b, given that tissue in that voxel is known, can
be expressed by means of Bayes formula:

p(x, y|k) = p(k|x, y) p(x, y)
p(k)

(11)

The following simplifying assumption is introduced:

p(k|x, y) = p(k|x) (12)

Note that this simplification of the joint probability distribution
does not assume absolute independence of tissue from activity,
but independence conditionally to MRI image intensity. In
other words knowledge of activity in a voxel as a first



approximation does not give any information about tissue if
the MRI intensity in that voxel is known.

The probability that a voxel belongs to tissue k is estimated
with the Gaussian Mixture model in (7). From (11),(12) and
(7) the estimate of the conditional probability to extract (x, y)
given tissue k is the following:

p̂(x, y|k) =
G
(
x− µk

σ2
k

)
Nk∑
k=1

p(k) G
(
x− µk

σ2
k

) p̂(x, y) (13)

Joint Entropy quantifies the uncertainty associated with two
random variables:

H(X,Y ) = −
∫∫

p(x, y) log p(x, y) dxdy (14)

Conditional Joint Entropy quantifies uncertainty associated
with two random variables X and Y given that the value of
another random variable K is known. While entropic function-
als are defined for random variables taking discrete values,
as in this case X and Y are continuous, the generalization
of Conditional Joint Entropy to the domain of real numbers
is considered here. If K takes values k = 1, 2, ..Nk with
probability p(k), the Conditional Joint Entropy for continuous
variables X and Y is defined as:

H(X,Y |K) =

Nk∑
k=1

p(k) H(X,Y |k) (15)

H(X,Y |k) = −
∫∫

p(x, y|k) log p(x, y|k) dxdy (16)

Let us approximate the integral with the sum of rectangular
parallelepipeds of base (∆x,∆y):

H(X,Y |k) u −∆x∆y
M∑
i,j

p(xi, yj |k) log p(xi, yj |k) (17)

The optimization algorithm described in the next session
will require the gradient of H(X,Y |K) with respect to
samples yb; by the chain rule for differentiation:

∂H(X,Y |K)

∂yr
=

Nk∑
k=1

p(k)
∂H(X,Y |k)

∂yr
(18)

∂H(X,Y |k)
∂yr

= −∆x∆y
M∑
i,j

(
1+log p (xi, yj |k)

)
·∂p(xi, yj |k)

∂yr

(19)
Differentiating p̂(x, y) with respect of samples yr (10):

∂p(x, y)

∂yr
=

1

Nb
G
(
x− xr

σ2
x

)
G′
(
y − yr
σ2
y

)
(20)

And from (13)

∂p(x, y|k)
∂yr

=

G
(
x− µk

σ2
k

)
Nk∑
k=1

p(k) G
(
x− µk

σ2
k

) ∂p(x, y)

∂yr
(21)

C. MAP reconstruction

The Conditional Joint Entropy similarity derived in the
previous section is embedded in a Bayesian reconstruction
framework by means of the Gibbs prior. Activity is then
estimated by maximum a posteriori expectation maximization
(MAPEM) with the one-step-late (OSL) approach proposed by
Green for inclusion of the prior term [28].

Let z = zd represent the number of photons collected at
each detector bin d ∈ D; the maximum a posteriori estimate
of the activity is the argument that maximizes the Poisson
likelihood and the prior activity distribution

ŷ = argmax
y

p(z|y)p(y)
p(z)

(22)

The equivalence of Markov Random Field and Gibbs dis-
tribution expresses the prior probability of an activity configu-
ration in terms of its entropy, as entropy represents an energy
functional on the maximal complete subgraph of y.

p(y) =
1

Z
e−βV (y) (23)

where Z is a normalizing factor called the partition function.
The optimization in 22 may be performed with a variety of
methods, including gradient ascent and conjugate gradient,
however the Expectation Maximization (EM) of Shepp Vardi
[24] is adopted in the following as it intrinsically guarantees
positivity of ŷ and has faster convergence rate than gradient
ascent.

Exponential priors can be embedded in the EM algorithm
with the One Step Late (OSL) approximation that was intro-
duced by Green [28]. As discussed in [28], explicit formulation
of the M step exists only if V (y) is quadratic, however with
the OSL approximation the gradient of V (y) is computed at
the previous EM step, allowing for any V (y). Convergence
is not guaranteed, but the method behaves well in practical
cases.

ŷ
(n+1)
b = ŷ

(n)
b

1
Nd∑
d=1

pbd + β
∂V (y)

∂yb

∣∣∣
y
(n)
b

Nd∑
d=1

pbd zd

Nb∑
b′=1

pb′d ŷ
(n)
b′

(24)

Minimizing the Joint Entropy between MRI and activity,
conditional to tissue:

p(y) =
1

Z
e−β

∑Nk
k=1 p(k) H(X,Y |k) (25)

In equation (24), the gradient of the energy function is:



β
∂V (y)

∂yb
= β

Nk∑
k=1

p(k)
∂H(X,Y |k)

∂yb
(26)

Which is expressed by (19)(20)(21).

Note that the difference between this approach and the
conventional Joint Entropy approach (see for example [18])
is the following:

∂V (y)

∂yb

∣∣∣
CCJE

=

Nk∑
k=1

p(k) G
(
x− µk

σ2
k

)
Nk∑
k=1

p(k) G
(
x− µk

σ2
k

) ∂V (y)

∂yb

∣∣∣
JE

(27)
Where one can recognize from (3)(4)(5) the partial

membership of x, i.e. the probability that a voxel with
intensity x is a member of tissue k. This gives an intuitive
interpretation of the method: Joint Entropy between MRI and
activity is optimized concurrently moving in k directions,
each weighted by the probability that the voxel belongs to a
class of tissue k.

III. VALIDATION

Synthetic brain data from BrainWeb [9] was adopted in
order to validate the proposed reconstruction algorithm and
compare it with other methods. The MRI and functional
imaging processes were decoupled by adopting a manually
segmented anatomical image as ground truth of tissue
composition. BrainWeb database provides a partial volume
segmentation of the brain obtained from manual segmentation
of 27 T1-weighted MRI images of the same subject: to
each voxel is assigned a percentage of each type of tissue
by averaging the 27 labels. This segmentation with partial
volume information is considered the ground truth model
of the brain tissue, which is used to simulate independently
MRI imaging and radio-tracer activity. The MRI image was
generated with the BrainWeb simulator, which uses first-
principles modeling based on the Bloch equations to simulate
the signal production, and realistically accounts for noise of
the imaging system. The parameters of the simulator were
set for T1-weighted imaging with noise standard deviation
set at 3% of the brightest tissue and perfect uniformity of
the magnetic field (in accordance with the simplistic MOG
model). Activity of 99mTc − HMPAO was simulated by
associating typical activity levels to different tissue types,
proportionally to partial voxel occupation. Specifically the
activity in gray matter was set to a value 4 times higher than
in all other tissues. The total number of counts was set to 2.5
Million.
The SPECT imaging system was simulated by means of a
rotation-based projector with realistic Collimator-Detector
Response (CDR) [29] and applying Poisson noise to the
projections. The parameters of the imaging system (Point
Spread Function, size of the detector plane, distance of the
detector from the axis of rotation, number of positions of

Detector width∗ W 540 mm

Detector height H 400 mm

Distance from axis R 133 mm

Number of positions NP 120

Rotation step θ 3 deg

Total counts NT 2.5e6

PSF FWHM @ 0 mm FWHM0 4.29 mm

PSF FWHM @ 20 mm FWHM20 5.11 mm

PSF FWHM @ 40 mm FWHM40 5.70 mm

PSF FWHM @ 80 mm FWHM80 7.32 mm

PSF FWHM @ 160 mm FWHM160 9.98 mm

TABLE I
PARAMETERS OF SPECT IMAGING SYSTEM, BASED ON GE INFINIA WITH
LEHR COLLIMATOR. ∗ DETECTOR WIDTH IS PARALLEL TO THE AXIS OF

ROTATION OF THE GANTRY.

the Gamma Camera) were set to emulate a SPECT imaging
system based on GE Infinia with Low Energy High Resolution
(LEHR) collimator (Table III). Attenuation was not accounted
for in the SPECT simulation and in the reconstruction
process.
The MRI and activity images were defined on a cubic grid
of (128 × 128 × 128) voxels; figure 1 shows three slices of
the synthetic MRI and activity images along the transverse,
coronal and sagittal planes at the centre of each axis.

The Mixture of Gaussians Expectation Maximization
algorithm (MOG-EM) for tissue classification was
implemented according to equations (6)(7)(8)(9) in section
II-A. The number of tissue types was assumed to be Nk = 4;
the parameters µk were initialized to evenly spaced values in
the range of intensity of the MRI image; σk was initialized
to 1/Nk of the image intensity range; the mixing coefficients
were initialized to p(k) = 1/Nk ∀ k ∈ Nk. Then 30
iterations of the MOG-EM algorithm were performed and the
resulting parameters were verified by visual assessment of
the histogram of the image intensity, which presented peaks
at each µk, with spread given by σ2

k and area p(k). This
inspection was performed because unconstrained MOG-EM
is sensible to initial values of the parameters; however, as
briefly discussed in section II-A, the algorithm could be made
more robust and fully automatic with the use of statistical
atlases of the brain, which is common practice in algorithms
for image segmentation [30], [31].
Ideal sinogram data were generated from the activity phantom
using the rotation-based projector; multiple instances of the
sinogram were then generated by applying Poisson noise to
the ideal projection.

Activity was estimated from each sinogram instance by
running 100 iterations of the OSL MAP-EM algorithm of (24)
with the CCJE prior of (26) and (19).
The following formulas for the gradient of the energy function
were used in replacement of (26) and (19), for reconstruction



with conventional Joint Entropy:

β
∂V (y)

∂yb
= β

∂H(X,Y )

∂yr
(28)

where

∂H(X,Y )

∂yr
= −∆x∆y

M∑
i,j

(
1 + log p (xi, yj)

)
· ∂p(xi, yj)

∂yr

(29)
The prior based on Joint Entropy has a number of

parameters: β, which controls the importance of the prior;
the bandwidth of the Gaussian kernel for Parzen Windows
estimation of the joint pdf σx and σy (10); the size of the
discretization grid for the joint entropy ∆x and ∆y (17). The
bias/variance curves were computed varying ∆x and ∆y,
with an arbitrary value of σx = σy and the activity estimate
appeared to be largely independent upon ∆x and ∆y when
the discretization grid for the joint pdf has more than about
200 points in x and y, for any value of β. A discretization grid
of size 400 × 400 was chosen. For what concerns the choice
of σx and σy , multiple reconstructions were performed again
(with the grid 400×400) and the quality of the reconstruction
in terms of bias/variance appeared to increases when σx and
σy decrease, and then to abruptly decreases when they are
down to the order of ∆x and ∆y. The following values were
adopted σx = 10 ∗ ∆x and σy = 10 ∗ ∆y . This procedure
gave insight of the effect of the parameters and allowed us to
consider β as the only parameter of the algorithm.
For the Class Conditional Joint Entropy prior, the same
parameters ∆x, ∆y, σx, σy of the Join Entropy prior were
used.

Figure 5 reports bias/variance at each iteration of OSL
MAP-EM, for varying values of the hyper-parameter β. Fig-
ures 3 and 4 represent slices of the activity estimate after
100 iterations, with the value of β optimally chosen for each
algorithm, as explained in the next section.

A. Bias/Variance analysis

With access to multiple instances of the sinogram data, a
bias/variance characterization of the reconstruction algorithms
was performed.
Specifically the activity was estimated from 15 realizations of
the sinogram, indexed by r ∈ Nr (Nr = 15).

Let us define the bias image (at reconstruction step n) as
the voxel-wise mean difference from the true activity:

B
(n)
b , 1

Nr

Nr∑
r=1

(
ŷ
[r](n)
b − ytrueb

)
(30)

The variance image is the voxel-wise variance of the
reconstructed activity:

σ
2 (n)
b , 1

Nr

Nr∑
r=1

(
ŷ
[r](n)
b − ȳ

(n)
b

)2
(31)

Fig. 3. Reconstructed activity distribution. From top to bottom: True
activity; activity estimated with maximum likelihood (MLEM) reconstruction;
activity estimated with maximum a posteriori (MAPEM) reconstruction with
Joint Entropy prior; activity estimated with maximum a posteriori (MAPEM)
reconstruction with Class Conditional Joint Entropy prior.

Fig. 4. Detail of reconstructed activity distribution: true activity (left),
activity reconstructed with the prior based on Joint Entropy (middle), activity
reconstructed with the prior based on Class Conditional Joint Entropy (right).

ȳ
(n)
b =

1

Nr

Nr∑
r=1

ŷ
[r](n)
b (32)

The ensemble bias and variance are defined as the average
of the two measures over the voxel space:

BIAS(n) =

√√√√ 1

Nb

Nb∑
b=1

(
B

(n)
b

)2
(33)

V AR(n) =
1

Nb

Nb∑
b=1

σ
2 (n)
b (34)



Fig. 5. bias/variance curves obtained with multiple reconstructions over 15
noise instances. Curves are plotted for varying values of the hyper-parameter
associated with the priors. Considering the best parameters (leftmost curves)
Class Conditional Joint Entropy achieves low bias (i.e. the activity estimation
is similar to the phantom) while it controls the variance of the activity
estimation (dimensional instability).

Figure 5 reports the ensemble bias and variance at each
iteration of the reconstruction algorithms for unconstrained
MLEM, Joint Entropy MAP-EM and CCJE MAP-EM. In
presence of a prior, after a number of iterations the curves
tend to converge, while with unconstrained MLEM the noise
keeps increasing because of dimensional instability.
In order to compare the bias/variance curves of the different
algorithms, the optimal values of the hyper-parameter for
each reconstruction method was found by creating a set
of curves with varying hyper-parameters (figure 5). The
optimal value of β for each algorithm was chosen as that
value that determines convergence of the bias/variance curve
to a point closer to the axis origin (low bias ans low variance).

The reconstruction with Class Conditional Joint Entropy
produces images with lower bias when compared with the
conventional Joint Entropy method, while the noise is ap-
proximately unaffected. Consistently with the bias/variance
curves, the images of the activity reconstructed with the two
algorithms (figures 3 and 4) show approximately the same
level of random variations and the image obtained by CCJE
is more similar to the true activity at visual inspection.

IV. CONCLUSION

When compared with the conventional Joint Entropy prior,
the proposed method provides lower bias of the activity
estimate. At visual inspection the images result more similar
to the true activity and present discontinuities more consistent
with the anatomical image.

Because of the simplification in (12), the estimation of tissue
composition and the reconstruction are independent tasks as
tissue composition is completely determined by the anatomical
image. For this reason the method integrates well with any

algorithm for probabilistic tissue classification, and may take
advantage of further assumptions about tissue composition,
such as spatial correlation and prior knowledge of tissue
distribution from a population average. Furthermore it can
take into account a more realistic model of the MRI image
formation, including local Markovian assumptions and bias
field correction.

Further work has to be done in order to validate the
robustness of the algorithm in case of mis-registration and
to assess its effect on lesions that are not correlated to the
anatomical image.

APPENDIX A
EDGE PRESERVING FEATURE: INTUITIVE INTERPRETATION

One drawback of classic Joint Entropy maximization is that
the reconstructed activity can be continuous across boundaries
of the anatomical image. The reason for this is found in
the fact that multiple solutions to minimum JE are possible,
as has been pointed out by Somayajula et al. [18]. Several
methods have been developed to explicitly force edges in the
anatomical image to appear in the activity; in the context
of information theoretic functionals Somayajula et al. have
proposed to add a term that maximizes the JE between the
Laplacians of the two images.
Experiments (see image 4) have shown that the proposed
method provides implicit edge preservation; the following
presents an intuitive explanation of the implicit edge
preserving feature.

Consider n samples x̄ = x1, x2, .., xn of a random variable
X , with unknown probability distribution p(x); The following
experiment is set up: the samples x1, x2, .., xn are updated
by gradient ascent in order to maximize the entropy H(X)
associated with X; p(x) is estimated from the samples by
Parzen Windows with Gaussian kernels. Suppose, for simplic-
ity, that X is discrete and binary, with outcomes x0 and x1.
The histogram of x̄ and the Parzen Window estimate of the
pdf p(x) are pictured in 6 (first and second from the top) for
a random initialization of x̄.

H(X) u ∆x
M∑
i=1

p(xi) log p(xi) (35)

p̂(x) =
1

N

N∑
b=1

G
(
x− xb

σ2
x

)
(36)

∂p(x)

∂xr
=

1

N
G′
(
x− xr

σ2
x

)
(37)

x(n+1)
r = x(n)

r − ∂H(x)

∂xr
(38)

∂H(x)

∂xr
= ∆x

M∑
i=1

(1 + log p(xi))
∂p(xi)

∂xr
(39)

The derivative of H(X) with respect of x̂r drives the change
of x̂r at each step of the ascent algorithm in order to maximize
H(X). Figure 6 (third and fourth from the top) shows the two



terms of (39) before the summation. The second term has an
odd symmetry and the first term is almost symmetric around
x0 except for a tail due to x1, the same holds for x1. Figure
6 (bottom) shows the resulting gradient of the Entropy with
respect of x0 and x1: the two Gaussians attract each other,
but the further away the less they attract as the tails become
smaller and smaller; when x0 and x1 coincide, the gradient is
zero. One could say that maximization of the entropy clusters
the probability density function as samples that are far stay
far and samples that are close attract to each other.

Fig. 6. Example of Entropy optimization.

In the 2-dimensional case, random variables X and Y
represent the intensity of two images, respectively functional
and anatomical, JE is defined in (16)(17). The same
experiment as in the 1-dimensional case is set up, where the
samples of Y are now controlled in order to maximize the
JE. For the two images in figure A the histogram has 3 deltas
and the Parzen Window estimate of the joint pdf p(x, y)
is reported in figure A (top). The Gaussians, as in the 1-D
example, will attract each other; but as x̂ does not change,
the Gaussians in figure move only along the y axis. After
convergence the joint pdf and the image ŷ look like in figure
A (middle). B and C have attracted to one another until the
two areas in the image have assumed the same value, while
A has been attracted by C (and vice versa).

The proposed method optimizes concurrently multiple Con-
ditional Joint Entropy terms; for each, the gradient of JE
is multiplied by a function that depends on x only (21).
This function expresses the probability that the activity being
optimized belongs to each of the Nk classes. The anatomical
image in the example is represented by two classes. Figure
A (bottom) reports the two probability functions f1 and f2
with an arbitrary value of σk. Now the optimization of JE
conditional to tissue k = 2 affects less A and attracts B and
C while the optimization of JE conditional to k = 1 affects
less C. B and C still attract to one another, but A is not
attracted by C.
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