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Abstract—Stochastic methods based on Maximum Likelihood
Estimation (MLE) provide accurate tomographic reconstruction
for emission imaging. Moreover methods based on MLE allow to
include an accurate physical model of the imaging setup in the
reconstruction process, thus enabling quantitative reconstruction
of radio-tracer activity distribution. It has been shown that
inclusion of a spatially dependent PSF that models dependence
of the CDR with distance from the detector, improves the quality
of reconstruction in terms of noise and bias.
The computational complexity associated with stochastic methods
has limited adoption of such algorithms for clinical use and
inclusion of the PSF further increases the computational cost.
This work proposes an accelerated implementation of a recon-
struction algorithm specifically designed to take advantage of
the architecture of a General Purpose Graphics Processing Unit
(GPGPU).

I. INTRODUCTION

Iterative reconstruction methods based on a stochastic model
of the emission process [1], [2], [3] have been widely shown to
provide better image quality than analytic reconstruction [4],
[5]. The reason for the improvement in image quality is that
photon count statistics are taken in account in the model of
the imaging system; furthermore stochastic methods facilitate
the inclusion of complex system models that take into account
detailed collimator and detector response (CDR).
The CDR, including collimator geometry, septal penetration
and detector response, may be taken into account in a stochas-
tic reconstruction algorithm in the form of a Point Spread
Function (PSF) that modulates the response of an ideal Gamma
Camera [6][7].
The computational complexity associated with stochastic
reconstruction methods however still limits their application
for clinical use and inclusion of complex system models
further increases the computational demand. Projection and
backprojection constitute the most burdensome part of a
reconstruction algorithm in terms of computational resources
and memory and are performed recursively at each iteration
step.

Efficient computation of line integrals for projection and
backprojection by ray-tracing was proposed by Siddon [8].
However with a ray-based approach it becomes inefficient to
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include a depth-dependent PSF, as this requires the casting of
a number of rays within a tube of response for PET [9] and a
cone of response for SPECT [6]. Furthermore, though there
exist GPGPU accelerated implementations [10], ray-based
projectors cannot fully exploit Single Instruction Multiple
Data (SIMD) architectures such as GPGPUs because of
sparsity of data representation and low arithmetic intensity
due to independence of the rays.

This work proposes a GPU accelerated implementation of
the rotation-based projection and backprojection algorithm
proposed by Zeng and Gullberg [6]. This algorithm drastically
reduces memory requirements and allows to perform convo-
lution with the PSF in the frequency domain in O(N logN)
by means of Fast Fourier Transform.
Rotation-based projection and backprojection are particularly
well suited to GPGPU acceleration because reorganization of
the data into a regular grid yields efficient use of the shared
memory and of the global memory bandwidth provided by the
GPU architecture. Moreover the algorithm takes advantage
of the hardware based trilinear re-sampling, offered by the
GPU’s 3-D texture memory fetch units.

The aim of the proposed algorithm and software design is to
provide a software library for fast GPU accelerated iterative
emission tomographic reconstruction. Design criteria include
performance, modularity, accessibility of the code, re-usability
and portability.

II. METHOD

A. Projector and backprojector

Let the radio-pharmaceutical activity within the region of
interest of the patient’s body be a continuous function de-
noted by ỹ. In order to readily discretize the reconstruction
algorithm, it is convenient to imagine that the activity is in
first place discrete in space [1]. Let us approximate ỹ by a set

Fig. 1. Rotation-based projection: the activity is re-sampled on a regular grid
aligned with a camera and then projected. This enables FFT based convolution
with the (depth-dependent) collimator-detector response.



of point sources y = yb, b = 1, .., Nb displaced on a regular
grid.
As each point source emits radiation at an average rate yb
proportional to the local density of radio-tracer and emission
events in a same voxel are not time correlated, the number of
emissions in the unit time is a Poisson distribution of expected
value yb. The geometry of the system and attenuation in the
patient determine the probability pbd that a photon emitted
in b is detected at detector pixel d. From the sum property of
the Poisson distribution, the photon count in d has Poisson pdf
with expected value

∑
b pbdyb. Given activity y, the probability

to observe counts z is

p(z|y) =
Nd∏
d=1

P(
∑
b

pbdyb, zd) (1)

Amongst all the activity configurations that might have gen-
erated the observed photons, the activity that maximizes the
likelihood function is optimal in the sense of the L2 norm of
the difference from the true value, for the log linear distribution
p(z|y) [11].

ŷ = argmax
y

p(z|y) = argmax
y

log p(z|y) (2)

Expanding log p(z|y):

ŷ = argmax
y

Nd∑
d=1

(∑
b

pbdyb + zd log
∑
b

pbdyb

)
(3)

A gradient-based optimization algorithm, such as gradient
ascent, requires the gradient of the likelihood function with
respect of the activity in each point source, differentiating 3:

∂p(z|y)
∂yr

|y=ȳ =
∑
d=1

pbd +
∑
d=1

pbd
zd∑

b′ pb′d yb′
|y=ȳ (4)

∑
b′ pb′d yb′ is referred to as projector, and

∑
d pbdfd as

backprojector of fd.
Similarly the Expectation Maximization algorithm for max-
imization of the likelihood (MLEM) implies projection and
backprojection [1]:

λ̂
(k+1)
b = λ̂

(k+1)
b

1∑
d pbd

∑
d

pbd
zd∑

b′ pb′d yb′
(5)

In case of ideal CDR, with a parallel hole collimator, the
system matrix pbd is non-zero only along lines perpendicular
to the collimator entry surface and the projection is a line
integral operator. A more detailed system model accounts for
the sensitivity of each detector pixel to radiation emissions
from each voxel. With a planar detector, coupled to a parallel
hole, cone beam or fan beam collimator, the sensitivity is
invariant to shift along the detector plane. With shift invariant
CDR, projection is factorisable into a line integral operator and
a convolution operator [6]. The CDR is generally dependent
upon the distance from the detector plane.

B. Rotation-based projector and backprojector

The rotation-based projection and backprojection algorithm
proposed by Zeng and Gullberg [6] was adopted as it suits
the GPU architecture and is convenient to be incorporated
with depth-dependent response functions. For each position
of the gamma camera, the image matrix volume is rotated so
that the front face of the volume faces the detection plane
- Figure 1. As the image is re-interpolated on a grid that is
aligned with the detection plane, all the point sources that
lay on a same plane parallel to the detector are now at the
same distance from the detector. A depth-dependent PSF that
models the CDR can be incorporated efficiently by convolving
each parallel plane with the PSF that models the relative to
the distance of the plane from the collimator. The convolution
can be performed by multiplication in the frequency domain,
reducing the complexity from O(N2) to O(N logN).
Backprojection similarly takes advantage of rotation to incor-
porate the depth dependent PSF. Details of the implementation
of the projector and backprojector are given in the next section.

C. GPU accelerated rotation-based projector and backprojec-
tor

For problems that present enough task parallelism, state of
the art GPUs can provide an acceleration of up to 10x over a
high end CPU, however the speedup can increase by another
order of magnitude if the structure of the algorithm allows
for efficient use of the shared memory of the GPU [12],
[13], [14]. While on CPUs the cache hierarchy compensates
costly accesses to external RAM and cache heuristics account
for a large class of computational problems, the simplified
memory hierarchy of GPUs requires careful design of the
algorithms for efficient memory access. The external memory
is directly exposed to the programmer, who has to consider
explicitly coalesced access due to the mismatch between
data rate and cycle time of the DDR memory. On the other
hand the simpler structure of the memory and vicinity of
the RAM to the processor yield data throughput 10 times
higher than the throughput between CPU and RAM - Figure 2.

The fast RAM memory of the GPUs explains the 10×
speedup, however the Single Instruction Multiple Data (SIMD)
architecture and the shared memory of the GPU provide
additional speedup for a class of computational problems. In
the SIMD architecture, many processor cores fit on the same
chip due to simplified design of the processor cores, which
are grouped, in the case of NVidia GPUs, in a multiprocessor
with a single common fetch unit. Multiple cores can operate
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Fig. 2. Memory structure of the host machine and GPU and typical memory
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Fig. 3. Rotation-based projection on GPU

concurrently in a multiprocessor if they execute the same
instruction, so if the computational problem is such that the
same operation is performed on multiple segments of data,
the GPU can use a great number of processors at the same
time. As the RAM data throughput would still be too low to
continuously feed data to all the cores, the processor cores
that are grouped in a multiprocessor have access to an on-chip
memory that can be read and written concurrently by all the
cores in a single clock cycle, through multiple data paths.
The size of the shared memory is limited to a few Kbytes on
currently available GPUs. This design offers the possibility
to exploit the full power of the cores as long as the cores
in a multiprocessor can reuse the data that resides in the
shared memory, hiding accesses to the global memory, that
is hundreds of times slower. In order to take full advantage
of the GPU architecture, a computational problem needs
to expose parallel tasks that run on each multiprocessor,
each task being partition-able into serial tasks that use
limited memory (up to a few Kbytes) and present a high ratio
between the number of operations and the accesses to memory.

Another feature offered by Nvidia GPUs is hardware
trilinear interpolation. A portion of memory may be specified
as a 1D, 2D or 3D array and floating point memory addresses
are accepted by the memory access unit, which decodes the
non-integer address, reads the values stored in the nearest
memory locations and interpolates linearly.

Ray-tracing on GPU can take advantage of the fast RAM
memory of the GPU and of hardware interpolation, however
independence of the rays impedes efficient use of the shared
memory. It might be possible to take advantage of the
shared memory as the rays share some information, however
that would imply processing concurrently multiple partial
rays in blocks in a way that exposes the data in common.
Rotation-based projection and backprojection reorganize data
in a way that exposes the data locality.

1) Projector: Activity and the depth dependent PSF are
copied to the GPU global memory and additional memory
is allocated for the sinogram and for each of the structures
depicted in Figure 3. The support of the image (ordered list
of the x, y, z indexes of the image voxels) is extracted and
stored in global memory.

For each position of the gamma camera, the activity matrix
volume is rotated so that the front face of the volume faces
the detection plane. In order to optimize the usage of the
GPU, rotation is performed by multiplying the support of the
image by the rotation matrix, then the image is re-sampled at
the locations specified by the rotated support. Rotation of the
support maximizes the device occupancy (concurrent usage
of the multiprocessors) and takes advantage of the shared
memory by partitioning the matrix multiplication [15]. The
trilinear interpolation is performed in hardware by the texture
fetch unit of the GPU at the cost of a memory access and
coalesced memory accesses are obtained by partitioning the
memory transfers in blocks.

For each camera’s position, the activity is rotated from
its initial position, rather than from the previous camera’s
position, in order to minimize interpolation errors. After
reinterpolation, each image plane parallel to the camera
is convolved with the PSF. Convolution is performed by
zero-padding the plane to double its linear size, computing
its 2D FFT, multiplying by the FFT of the zero-padded PSF,
back-transforming and truncating. As depicted by the arrows
in Figure 3, the convolution is performed in place, in order
to minimize memory occupancy. 2D FFT is performed by
means of the CUDA CUFFT library that takes into account
all the architectural factors and constraints of CUDA, memory
coalesced access, bank conflicts and efficient shared memory
usage.

Finally a kernel sums all planes and stores the result in the
sinogram data structure. Shared memory cannot be used in
the summation step as the number of operations (sums) is
exactly equal to the number of memory accesses, however
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Fig. 4. Rotation-based backprojection on GPU

device occupancy and memory coalescing are optimized by
partitioning the sums in blocks.

2) Backrojector: The sinogram and the PSF are transfered
from the host machine RAM to the GPU global memory
and all the structures depicted in Figure 4 are allocated
on the GPU memory. Two volumes are allocated for the
backprojection, a rotating volume and a fixed volume that
is initialized to 0 and contains in the end the result of the
backprojection.

One projection at a time is extracted from the sinogram data
structure and the value on each pixel is backprojected to the
rotating volume along lines perpendicular to the detection
plane. This step is performed by a GPU kernel that copies a
pixel to a local register and then copies it back into all the
voxels in the same column of the rotating volume. Each plane
of the rotating volume is then convolved in place with the
PSF by multiplication in the frequency domain. The rotating
volume is rotated to the zero position and then accumulated
into the fixed volume.

The same series of operations is repeated for each camera’s
position.

D. Software design

A software library for projection and backprojection was
designed with the aim of accessibility and re-usability. The
code was developed in C and CUDA, adopting NiftiLib data
structures to conveniently handle image volumes. The library
provides a development Application Programming Interface
(API) based on NiftiLib data structures and a C array API to
simplify integration and usability - Figure 5.

On top of the C array interface, ctypes-based Python
and mex-based Matlab extensions provide a high level
interface to the projector and backprojector, simplifying the
development and prototyping of reconstruction algorithms.
The complexity of the GPU accelerated algorithms for

projection and backprojection is hidden from the Python and
Matlab programmer. Though MLEM reconstruction could
be performed entirely on the GPU, the software has been
designed to expose functions for projection and backprojection
through the C array API and to the Matlab/Python bindings.
This way the gradient of the likelihood is made available
to the Matlab/Python workspace, enabling the development
of optimization schemes, Bayesian image reconstruction
algorithms, algorithms for joint estimation of image
parameters and multi-modal reconstruction.
This comes at the cost of a number of data transfers from the
RAM of the host machine to the global memory of the GPU,
however the number of transfers is only equal to the number
of iterations of the given iteration algorithm and practically
reduces performance by less than 5%.

The sample code below implements MLEM reconstruction
in Matlab. The two functions et project and et backproject
hide the complexity of the GPU implementation of the
projection and backprojection algorithms.

N = 128 ;
i t e r a t i o n s = 100 ;
phantom = e t s p h e r i c a l p h a n t o m (N, N, N,N/ 2 ,N/ 3 ,N/ 2 , 0 , 1 0 0 ) ;
cameras = [ 0 : 1 : 1 8 0 ]∗ pi / 1 8 0 ;
a c t i v i t y = ones (N, N,N ) ;
p s f = ones (N, 5 , 5 ) ;

s inogram = p o i s s r n d ( e t p r o j e c t ( phantom , cameras , p s f ) ) ;
s e n s = e t b a c k p r o j e c t ( ones (N, N, 1 8 0 ) , cameras , p s f ) ;

f o r i =1 : i t e r a t i o n s
r e s i d u a l = s inogram . / e t p r o j e c t ( a c t i v i t y , cameras , p s f ) ;
a c t i v i t y = a c t i v i t y .∗ e t b a c k p r o j e c t ( r e s i d u a l ) . / s e n s ;

end

C Array API Nifti API Nifti Lib

CUDA

FftW

Matlab

Python

Command line

Fig. 5. Application Program Interface (API) for GPU accelerated reconstruc-
tion software.



III. PERFORMANCE

While the same algorithms and software apply to different
emission tomographic imaging modalities, the performance
of the proposed projection and backprojection algorithms was
evaluated in the case of OSEM reconstruction for SPECT.
The iterative reconstruction algorithm was implemented
with the object oriented language Python, in order to
ease programming and re-usability. However this choice is
independent of the proposed implementation of the projector
and backprojector.

Table I reports reconstruction times with GPGPU
accelerated projector and backprojector and with an equivalent
CPU implementation that was developed and optimized along
with the GPU version. For a tomographic image of size
1283, reconstruction with the GPGPU accelerated algorithms
provides a 75-fold speedup, when compared with efficient
C implementation of the same algorithm, executed on a
Intel Xeon E5430@2.66GHz CPU. Reconstruction time, with
GPGPU acceleration, for 1283 tomographic image size, 180
camera positions and 60 iterations of OSEM (subset order 8)
is 12 seconds instead of 15 minutes.

TABLE I
SPECT RECONSTRUCTION WITH OSEM ITERATIVE ALGORITHM, SUBSET

ORDER 8, 180 CAMERA POSITIONS, 60 ITERATIONS. RECONSTRUCTION
TIME IS REPORTED FOR SEVERAL SIZES OF THE TOMOGRAPHIC DATA,

WITH AND WITHOUT GPGPU ACCELERATION.

Tomography size 323 643 1283 2563

Intel Xeon E5430,2.66GHz 30sec 3min 15min 65min

NVidia GeForce GTX-285 6sec 8sec 12sec 45sec

Acceleration factor 5 22.5 75 86.6

While rotation-based projection and backprojection are
alone significantly faster than ray-driven approaches [6], the
GPU implementation provides a further dramatic 80 fold
speedup. This is about the ideal increase of performance that
one would expect with GPU acceleration for algorithms that
present enough parallelism, arithmetic intensity and memory
coalescing, which validates our approach and implementation.
The combination of a rotation-based approach and GPU
acceleration provides very fast projection and backprojection
with accurate collimator detector response based on depth-
dependent point spread function. As reconstruction time is
significantly lower than acquisition time, which is typically of
the order of 10−20 minutes for SPECT, the GPU accelerated
algorithm achieves real-time processing.

IV. FUTURE WORK

The software can be extended in order to take into account
attenuation of the photon flux. Inclusion of attenuation cor-
rection in the rotation-based projector and backprojector, as
described in [6], does not involve much additional computa-
tional complexity. At present, only the parallel hole collimator
geometry for SPECT has been considered. The software may
however be modified to take into account other collimator

geometries such as cone beam and fan beam, by adding
a shearing component to the transformation matrix of the
image support. Rebinning of PET sinograms is currently under
investigation.

V. DOWNLOAD

The GPU and CPU versions of the presented rotation-based
projector and backprojector are open source and can be freely
downloaded [16]. The package includes the source of the
C/CUDA projector and backprojector, the compiled shared
libraries for Linux and Windows, and a mex-based Matlab
toolbox with documentation and examples. As the software
makes use of the CMake cross platform build system, it can
easily be ported to other platforms.
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