
Boss/Worker Model for Multi-GPU
Programming

Stefano Pedemonte and Sebastien Ourselin

The Centre for Medial Image Computing, UCL, London, United Kingdom.

Abstract. The Boss/Worker (B/W) model provides a simple and effec-
tive abstraction for parallel execution of problems that present a high
degree of task concurrency. This is achieved by providing automatic load
balancing and by efficiently hiding the communication latencies. We ad-
dress the issue of integrating general purpose graphics processing units
(GPGPU) into a cluster by designing a novel Boss/Worker model which
enables to tailor the distribution of workload across a non-uniform clus-
ter, where some of the nodes, but not necessarily all, are equipped with
GPU. Our solution particularly tailors the lack of awareness of GPU
acceleration by the underlying messaging system and the selection and
allocation of GPU devices. We present in detail our Boss/Worker design
and an implementation based on the MPI messaging system. Finally,
we demonstrate the scalability and performance of our approach apply-
ing the Boss/Worker programming model to an algorithm for Emission
Tomographic Reconstruction.

Keywords: GPGPU, boss/worker, parallel programming, cloud com-
puting, medical image computing, MPI, Python

1 Introduction

While the standardization of programming interfaces is allowing a number of
applications to be ported to GPGPU, benefiting a 10 to 100 fold increase in
performance when compared with single CPU implementations [1][2][3], scal-
ing applications to run on multiple GPGPUs relies on ad-hoc solutions. Multi-
threading and multiprocessing technologies allow one to orchestrate the use of
multiple graphics cards on the same machine, but the number of GPUs is limited
by PCI bandwidth and physical size of the motherboard. Message passing tech-
nologies on the other hand allow one to scale applications to use multiple CPUs
in homogeneous and heterogeneous clusters but there is scarcity of programming
models and software support for multi-GPU systems [4][5].

Though it is possible to adapt communication protocols designed for parallel
computing on distributed memory systems [6], such as MPI, to make use of
GPUs, the complexity of the multiprocessor based GPU programming model and
the additional complexity of the shared memory programming model hinder the
design and development of applications. In this paper we investigate how the

2 Stefano Pedemonte and Sebastien Ourselin

Boss/Worker model can be adapted to distribute the execution of code over
multiple GPUs in a distributed memory system.

The B/W model provides an abstraction over the communication protocol,
guaranteeing automatic load balancing and a degree of latency hiding. Hiding
the communication protocol, the B/W paradigm allows the programmer to be
agnostic about the underlying mechanism that allows the nodes to exchange
data and to ignore communication latency hiding and load balancing amongst
the units of execution.
The B/W programming paradigm provides an abstraction over the communica-
tion protocol and guarantees automatic load balancing and latency hiding for
computational problems that present a high degree of task parallelism [7][8].
Many such problems are encountered in the processing of imaging data.

We aim at providing a mechanism that allows us to distribute the code
that was conceived for execution on single GPU over multiple GPUs with little
additional effort. Furthermore we aim at providing a design of the B/W model
that allows us to scale the distribution of tasks on a large range of platforms:
multiple GPUs on a single machine, one or multiple GPUs per machine in a
cluster, or a number of CPUs in a cluster or in a grid, achieving abstraction
from the hardware and the communication systems.

We analyse the applicability of the B/W model to a distributed memory
multi-GPU system and present an implementation of the B/W model that pro-
vides full abstraction over the network and messaging system and tailors the
problems of detection and allocation of the GPU devices. and collaboration of
tasks on a number of nodes.

In the first section we describe the B/W programming model and issues
specific to GPU embedding; we then describe the implementation of the back-
end based on MPI-2 and finally we validate performance and scalability on a
genuine application for Emission Tomographic Reconstruction.

2 GPU aware Boss/Worker architecture

In order to scale execution of a program that makes use of the B/W abstrac-
tion on a number of different architectures, ranging from a single multi-core
machine, to a GPU cluster, to a computing grid, we designed an API that
builds an abstraction over the mechanism for data exchange. The back-end for
communication and data exchange is an interchangeable module which can be
reimplemented in order to enable the same applications to run under different
computation environments.

In order to maintain a common API, it is necessary to address the issue of
selection and allocation of GPU devices in a way that is consistent with the
abstraction and that can be implemented over all the back-ends. It is straight-
forward to allocate GPU resources when multiple GPUs run on a single machine,
by means of the GPU API, however batch queuing systems, message passing in-
frastructures and the operating system are unaware of GPUs. As batch queuing
systems are not GPU aware, one simple solution to the allocation of resources

Boss/Worker Model for Multi-GPU Programming 3

Fig. 1. Boss/Worker abstraction

is to assume that there is a one-to-one matching between nodes and GPUs so
that one may rely on the existence of a GPU on each node. However we address
heterogeneous clusters where some of the machines have one or more GPUs. The
batch queuing system has no awareness of the GPUs so we let the system decide
what nodes to allocate (this can be controlled configuring the batch queuing sys-
tem), then the B/W software implements a handshaking mechanism that makes
the Boss aware of the computing resources of each worker. When the application
is launched, all the workers attempt to use the GPU API (cudaGetDeviceCount
and cudaGetDeviceProperties) to retrieve the properties of the installed GPUs
and communicate to the Boss a list of the GPUs installed on the local machine
and their characteristics. The Boss then uses MPI node IDs (process IDs for the
OS Pipe back-end) and GPU device number to figure out which nodes might
conflict the allocation of a GPU on the same machine and assigns uniquely one
GPU to each Worker; the Worker allocates the device that it has been assigned
so each Worker is associated at most to one GPU. In order for all the GPUs
to be in use it is necessary to configure the queuing system to create, on each
machine, at least one node per GPU.

The Boss assigns a unique WorkerID to each Worker and stores informa-
tion about whether the Worker is GPU capable and what is the type of GPU
and its compute capability (CUDA 1.1, CUDA 2.0, ..). The programmer de-
fines the Boss and the Worker functionalities by sub-classing two basic Boss and
Worker classes. Each method of the Worker class may be executed by the Boss
simultaneously on several Workers. A function list workers(compute capability)
allows the Boss to obtain a list of Workers with a specific compute capability;
the parameter to this function is a string that allows the Boss to query a list of
all Workers that support GPU acceleration, or a list of the Workers that have
a compute capability equal, greater or smaller then a specific value (for exam-
ple =CUDA 2.0 lists all the Workers that have a CUDA device with compute
capability exactly equal to 2.0).

The Boss has a main method that is executed when the Boss is first started
byM.engage(). The programmer overrides themain method of the Boss to define
the execution of tasks by the Workers.

4 Stefano Pedemonte and Sebastien Ourselin

In order to achieve automatic load balancing and to hide communication la-
tency, the B/W implements and asynchronous API. The function do(task name,
worker ids, parameters) determines buffering of function name, parameters and
worker ids and returns immediately a job ID to the Boss. In the background the
function name and data objects are sent to the Workers. The second parameter
to function do may also be a string that specifies compute capability; in this case
the task is dispatched to any worker that has the requested compute capability.
An idle Worker is chosen if available, otherwise the Worker with least number
of tasks awaiting for execution is chosen. This mechanism is identical to the
classical task bag [9][10] if the compute capability is set to ANY, but it allows
to route tasks to nodes with GPU acceleration or specific compute capability.

If the Worker is busy, the function name, job ID and parameters are buffered
on the Worker side. When the Worker completes the execution of a job, it notifies
the Boss and pops a new job from the local buffer. The Boss disposes of two
APIs to query the status and result of a job: the asynchronous interface returns
None if the job (identified by its job ID) has not been completed, it returns
the result otherwise; the synchronous interface, that blocks until the result is
ready, is more efficient then polling the asynchronous interface when the Boss
wants to synchronize with a specific job outcome. A sync(jobIDs) function is
provided to wait until all jobs with given job IDs are completed or until all jobs
are completed if the argument is 0.

The Workers are shut down explicitly by the Boss by means of a poison pill
when the Boss shuts down. Before terminating, the Worker process deallocates
the GPU device.

3 MPI Backend

The back-end for communication and data exchange can be implemented with a
number of technologies, such as MPI, OS Pipes, Condor, BOINC, Tuple Space,
addressing different cluster configurations. This allows us to run the same un-
modified software on a single machine, on a cluster, or on a worldwide grid for
cloud computing.

The only implementation of the back-end currently implemented is based on
MPI-2. MPI and its batch queuing system provide the means to launch multi-
ple processes on the nodes of a cluster and to send and receive messages in a
synchronous and an asynchronous manner. The network layer is abstracted by
assigning a node ID to each node. Though a more efficient beck-end might be
designed to exploit shared memory when communicating amongst multiple pro-
cesses on a single machine, MPI can create multiple nodes on the same machine
and the OpenMPI implementation of MPI addresses the issue of efficient data
transfer amongst processes.

In the B/W model, the Boss communicates with the Workers and the Work-
ers send results back to the Boss, however there is no communication between
Workers directly; each Worker has a WorkerID that is mapped, in the MPI
back-end, to a node ID.

Boss/Worker Model for Multi-GPU Programming 5

Fig. 2. Scheme of the SPECT Imaging system (left). Rotation Based MLEM Tomo-
graphic Reconstruction for Emission Tomography (right)

In order to implement the task bag with double queue and asynchronous
behaviour, we use the asynchronous functions from the MPI API: asynchronous
send to send messages from the Boss to the Workers and back and iProbe and
recv to asynchronously receive the messages. We use the tag of the MPI message
to define three message types: JOB, RESULT, COMMAND ; the content of the
message is always a dictionary, that has specific fields for the three types of
messages. The JOB message has a function key, a parameters key, and a jobid
key; function is a string that specifies the name of the function, parameters is a
list object that lists all the parameters of the function (each with its own object
type) and jobid is the integer ID that the Boss assigned to the job. The RESULT
message, similarly, has a result key (list object) and a jobid key (integer). The
COMMAND message specifies a type key (string object) and a content key (list
object).

The back-end uses these three message types (tags) to send job requests,
results and messages for handshaking and shutdown (poison pill).

4 Applications and Performance

We present the implementation of an application for Emission Tomographic
Reconstruction. Through this application we show how the B/W programming
model applies to a genuine problem and we evaluate the benefit that can be
obtained by distributing the execution on multiple CPUs and GPUs by means
of the B/W framework.

4.1 Tomographic reconstruction

Iterative stochastic algorithms for Tomographic Reconstruction in Emission To-
mography (ET) provide high image quality, at the cost of high computational

6 Stefano Pedemonte and Sebastien Ourselin

Fig. 3. Performance of MLEM Tomographic Reconstruction with the Boss/Worker
framework for activity of size 323,643 and 1283 voxels. Top figures show execution time
for reconstruction on multiple GPUs; the figures in the bottom show execution time
for reconstruction on multiple CPUs. The given time is for 60 iterations of MLEM and
180 projection angles.

complexity. We implemented a GPU accelerated Maximum Likelihood Expecta-
tion Maximization (MLEM) algorithm for ET reconstruction [11] and distributed
its execution on multiple GPUs by means of the B/W framework.

The unknown 3-D activity λ̂b (figure 2), defined on voxel space B, determines
a projection image nd in camera space D, where the projection space includes
the pixels of the planar Gamma Camera at each position of the camera, as it
rotates at regular steps during the scan; the imaging system being described by
the transition matrix pb,d.

The MLEM algorithm iteratively updates an estimate of the radio-tracer ac-
tivity, with increasing likelihood of the estimation being the one that determined
the observed data [11]:

λ̂new
b = λ̂old

b

1∑D
d=1 pbd

D∑
d=1

nd pb,d∑B
b′=1 λ̂

old
b′ pb′,d

, b = 1, .., B (1)

A GPU accelerated projection/backprojection algorithm has been written
in C/CUDA and is described in detail in [12]. The projection/backprojection

function, which takes as input λ̂old
b , a list of cameras (their position and size),

a point spread function, input projection data from each camera, and produces
the backprojection (right of λ̂old

b (1)), has been automatically wrapped with the
wrapper generator based on SWIG for use with the B/W programming interface.

As can be observed from the MLEM formula in (1), the projection and back-
projection can be calculated for any subgroup of D and the resulting backpro-
jections need to be reduced by a sum operation in order to compute the new
estimate of λ̂. We exploit this task concurrency to execute the projection/back-
projection on multiple GPUs buy letting each GPU compute the backprojection
from a single camera (there are 180 cameras). The reduce operation is performed
by the Boss for simplicity and the synchronous interface allows reduced memory

Boss/Worker Model for Multi-GPU Programming 7

footprint as one projection is loaded from the workers at the time. The Python
listing for the MLEM reconstruction is reported below.

from PyMW import Boss , Worker , Backend MPI
from Spect import pro j e c to r , s a v e a c t i v i t y , un i f o rm ac t i v i t y ,\
c r e a t e p s f , c reate cameras , c r e a t e t e s t d a t a , subset cameras
N = 64 ;
n cameras = 180 ;
out name = ’ a c t i v i t y . n i i ’

class Spect Worker (Worker)
def p ro j e c t (a c t i v i t y , psf , cameras) :

return p r o j e c t o r . p r o j e c t (a c t i v i t y , psf , cameras)

class Spect Boss (Boss)
def r e c on s t ru c t (s e l f , sinogram , psf , cameras , a c t i v i t y) :

#use only nodes with GPU for pro jec t ion
workersIDs = s e l f . i n t e r f a c e . l i s t w o r k e r s (’GPU’)
i d l i s t = []
for i in range (l en (workerIDs)) :

cameras w = subset cameras (cameras , l en (workerIDs) , i)
#add job to the task bag
id = s e l f . i n t e r f a c e . do (’ p r o j e c t ’ , workerIDs [i] , a c t i v i t y ,\

psf , cameras w)
i d l i s t . append (id)

#reduct ion :
for id in i d l i s t :

a c t i v i t y += s e l f . i n t e r f a c e . g e t r e s u l t (id)
return a c t i v i t y

def main (s e l f) :
sinogram = c r e a t e t e s t d a t a (N, ’ bra in ’ , ’ po i s son ’)
p s f = c r e a t e p s f (N, ’ ddpsf ’)
cameras = create cameras (n cameras , 180)
a c t i v i t y = un i f o rm ac t i v i t y (N)
a c t i v i t y = s e l f . r e c on s t ru c t (sinogram , psf , cameras , a c t i v i t y)
s a v e a c t i v i t y (a c t i v i t y , out name)

i f name == ” main ” :
B = Backend MPI ()
W = Spect Worker (B)
M = Spect Boss (B)
M. engage ()
W. engage ()

The code has been tested for reconstruction on a small cluster of 16 comput-
ers, each equipped with a CPU Intel Core 2 Duo E6700 and a GPU NVIDIA GTX
285 with 1Gb of DDR3; the PCs are connected by means of 1Gbps Ethernet.
Each machine is equipped with Ubuntu-9.4 with NVIDIA drivers 195.36.1 and
they share a network drive where we have installed Python-2.5, Numpy-1.3.0 and
MPI4Py built with OpenMPI-1.4.1. We launch MPI by means of ssh. In figure 3
we report the execution time registered for reconstruction until convergence (60
MLEM iterations) with 180 projections and three different sizes of the activity:
323, 643, 1283 voxels. The three images on the top represent the reconstruction
time for the GPU implementation while the three in the bottom are for the CPU
implementation. These images show the speed up of approximately 100-fold of
the GPU implementation over the implementation for CPU, when executed on a
single core (no multi-threading support was implemented for the CPU version).
When the size of the data is small, the improvement is less marked because of

8 Stefano Pedemonte and Sebastien Ourselin

the time it takes to launch the kernels on the GPUs (tough the recently released
Fermi devices claim a 10-fold improvement in kernel scheduling time).

Scaling the execution on multiple GPUs gives an immediate benefit, but the
gain in performance drops when using more than 8 GPUs. This is due to the
latency when transferring the activity to the the Workers and back, in fact there
is no other task subsequent to projection/backprojection, so after each projec-
tion/backprojection task all the workers need to synchronize to perform the
reduction and produce the new estimation of the activity. When the algorithm
is distributed on 8 GPUs we obtain a speed up of about 4, while the speed up
for 8 CPU is of about 5 times. However it is remarkable that it is not possi-
ble to achieve the performance of a single GPU with a cluster of CPUs, due to
communication latency predominating the computation.

5 Conclusion

The aim of our work is to provide a Boss/Worker abstraction that allows to
distribute code on multiple machines in number of computing environments as
diverse as possible. We have reviewed the Boss/Worker programming model
showing its applicability and limitations. The B/W abstraction provides an ef-
fective way to distribute execution of code when the problem presents a high
degree of task concurrency. In this case a B/W programming model is appealing
as it provides abstraction from the communication protocol between processes
and because it provides automatic load balancing and hides communication la-
tency. We have presented the implementation of a Python based B/W framework
that allows to distribute an application, unmodified, on a number of diverse com-
puting environments; particularly we have addressed distribution of code in a
multi-GPU environment. We have addressed a number of issues involved in dis-
tributing workload to multiple GPUs and shown that the B/W abstraction is
well suited to multi-GPU programming.

Finally we have tested our B/W framework by implementing an algorithm for
Tomographic Reconstruction in Emission Tomography. This application shows
that the framework allows to distribute execution on multiple GPUs with little
effort for the programmer. However for this application, the scalability is limited
to a maximum of 8 to 16 GPUs because of the low computational intensity of the
macroscopic tasks that can be extracted. Nonetheless, a speed up of a factor 4 is
achieved by distributing the execution of the algorithm on 6/8 GPUs. Because of
the intrinsic low computational intensity of the problem taken into consideration,
the reconstruction algorithm does not scale well neither on CPU nor on GPU, but
the GPU implementation provides a speed up of up to 100 times over the CPU
implementation. The B/W framework introduces another speed up of a factor
4. The B/W programming model proves to simplify the distribution of code to
multiple machines and GPUs, and its unified interface provides the means to
distribute code on clusters of diverse sizes and configurations. It can be applied
to scale a GPU based application to run on a small GPU cluster, or to scale an
algorithm that presents sufficient task parallelism on a bigger cluster.

Boss/Worker Model for Multi-GPU Programming 9

References

1. Stone, J., Phillips, J., Freddolino, P., Hardy, D., Trabuco, L., Schulten, K.: Ac-
celerating molecular modeling applications with graphics processors. 28 (2007)
2618–2640

2. Ufimtsev, I., Martinez, T.: Quantum chemistry on grapical processing units. 1.
trategies for two-electron integral evaluation. 4(2) (2008) 222–231

3. Pedemonte, S., Gola, A., Abba, A., Fiorini, C.: Optimum real-time reconstruction
of gamma events for high resolution Anger camera. (Oct. 2009)

4. Schellmann, M., Gorlatch, S., Meilander, D., Kosters, T., Schafers, K., Wubbeling,
F., Burger, M.: Parallel medical image reconstruction: From graphics processors
to grids. PaCT 2009 LNCS(5698) (2009) 457–473

5. Scherl, H., Hoppe, S., Kowarschik, M.: Design and implementation of the software
architecture for a 3-d reconstruction system in medical imaging. In: ICSE, Leipzig,
Germany (2008)

6. Phillips, J., Stone, J., Schulten, K.: Adapting a message-driven parallel application
to gpu-accelerated clusters. SC2008 (2008)

7. Dongarra, J., Pineau, J., Robert, Y., Shi, Z., Vivien, F.: Revisiting matrix product
on master-worker platforms. International Journal of Foundations of Computer
Science 19(6) (2008) 1317–1336

8. Dongarra, J., Pineau, J., Robert, Y., Vivien, F.: Matrix product on heterogeneous
master-worker platforms. In: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, Salt Lake City, UT, USA (2008)
53–62

9. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Ad-
dison Wesley (2005)

10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

11. Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography.
IEEE Trans. on Medical Imaging 1(2) (1982) 113–22

12. Pedemonte, S., Bousse, A., Erlandsson, K., Modat, M., Arridge, S., Hutton, B.,
Ourselin, S.: GPU Accelerated Rotation-Based Emission Tomography Reconstruc-
tion. (Nov 2010) 2657–2661

