
An Inference Language for Imaging

Stefano Pedemonte12, Ciprian Catana1, Koen Van Leemput123

1 Athinoula A. Martinos Center for Biomedical Imaging, MGH/Harvard, MA, USA
2 Department of Information and Computer Science, Aalto University, FI

3 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DE

Abstract. We introduce iLang, a language and software framework for
probabilistic inference. The iLang framework enables the definition of
directed and undirected probabilistic graphical models and the auto-
mated synthesis of high performance inference algorithms for imaging
applications. The iLang framework is composed of a set of language
primitives and of an inference engine based on a message-passing system
that integrates cutting-edge computational tools, including proximal al-
gorithms and high performance Hamiltonian Markov Chain Monte Carlo
techniques. A set of domain-specific highly optimized GPU-accelerated
primitives specializes iLang to the spatial data-structures that arise in
imaging applications. We illustrate the framework through a challenging
application: spatio-temporal tomographic reconstruction with compres-
sive sensing.

1 Introduction

Probabilistic reasoning combines deductive logic with the capacity of probability
theory to handle uncertainty, providing an expressive formalism with a broad
range of applications in many areas of artificial intelligence and machine learning.
Stochastic programming languages address the model-building process by giving
a formal language which provides simple, uniform, and re-usable descriptions of
a wide class of models, and supports generic inference techniques [9, 11, 12, 10].
Probabilistic graphical models express explicitly the structure of probabilistic
models by means of a graph, constituting a natural data structure for the design
of stochastic programming languages.

The iLang framework is aimed at enabling the construction of models for
imaging applications, focusing in particular on volumetric biomedical imaging.
In this domain, probabilistic graphical models have been employed recently in a
number of applications including image segmentation, tomographic reconstruc-
tion and multi-modal image processing. The integrated modeling paradigm has
emerged in the work of K. Van Leemput [1], J. Ashburner [2], B. Fischl [3] and
others in the context of medical image classification and alignment, adopting
a model-based approach to devise algorithms for the joint estimation of multi-
ple model parameters. Other instances of the integrated probabilistic modeling
paradigm include the fusion of functional and structural information for the pur-
pose of inferring anatomical-functional networks of the brain [4], the fusion of

2 S. Pedemonte et al.

information from MRI and PET [5] and the use of population-derived informa-
tion for intensity-based classification of image structures [6]. In the aforemen-
tioned publications, probabilistic graphical models are employed for the purpose
of describing the models and aiding the derivation of the symbolic expressions
that the models imply; ad-hoc algorithms for maximum-a-posteriori inference
are devised based on the resulting symbolic expressions. The iLang framework
aims at enabling, under the integrated modeling paradigm, the construction of
algorithms that incorporate image formation, motion correction, registration,
classification, de-noising and other basic imaging tasks. The iLang framework
addresses imaging as probabilistic reasoning; it includes a mechanism for the de-
scription of the model, i.e. a modeling language, a mechanism for the definition
of inference queries, i.e. an inference language, and an inference engine that uti-
lizes the data structures produced by the interpreter of the modeling language
to perform inference. By using a formal modeling language, the computer gains
the concept of a probabilistic model. Endowing the numerical representations of
the probabilistic models with graph structures, then, enables the automated syn-
thesis of efficient inference algorithms. The modeling language of iLang is based
on language primitives designed for the construction of directed and indirected
probabilistic graphical models. The inference engine of iLang addresses, with-
out lack of generality, maximum probability and posterior sampling inference
queries. The design of the language and of the data structures for the represen-
tation of the models yields a graph-based message-passing system that supports
algorithms for maximum probability and posterior sampling. We describe two al-
gorithms currently implemented in iLang: an algorithm for maximum probability
estimation based on the Alternating Direction Method of Multipliers (ADMM)
and an algorithm for posterior sampling of high dimensional models based on
Hamiltonian Markov Chain Monte Carlo.

2 Methods

Imaging problems are not different, at the abstract level of probabilistic reason-
ing, from other computational problems that arise in artificial intelligence and
machine learning, although imaging problems have two salient characteristics:

1. Imaging data is often very high dimensional;
2. An underlying structure, in computational problems related to imaging,

arises from the spatial organization of the imaging data.

The high dimensionality may prohibit the use of certain classes of algorithms
such as posterior sampling techniques. In imaging applications, the system ma-
trices are often too large to be explicitly evaluated and stored in memory. The
underlying structure, however, often can be exploited to evaluate efficiently
matrix-vector multiplications on the fly and to increase the performance of the
inference algorithms. A design challenge arises: abstracting imaging problems
into the framework of probabilistic reasoning, therefore enabling the use of gen-
eral purpose inference algorithms, while exploiting the underlying structure that
arises from the spatial organization of the imaging data.

An Inference Language for Imaging 3

In iLang, the modeling language, the inference engine, and the inference
query language are implemented as modules for the Python programming lan-
guage. Language primitives constitute the units for the definition of probabilistic
graphical models. As explained in the next section, the language primitives are
based on a library of high performance geometric primitives which incapsulate
the computations that emerge from the spatial structure of the imaging data
(see Fig. 1).

INFERENCE QUERYMODEL SPECIFICATION

GRAPH PRIMITIVES

GRAPHICAL MODEL INFERENCE ENGINE ANSWER

Fig. 1. The iLang probabilistic reasoning framework. The modeling language enables
the definition of probabilistic graphical models using simple graph primitives. The in-
ference engine infers the state of variables of a probabilistic graphical model. Imaging
specific graph primitives are based on a library of high performance geometric primi-
tives.

2.1 The Modeling Language

Models in iLang are constructed by defining a set of variables and specifying
their interaction by means of a set of graph primitives. The following sections
explain the rationale of the design of the iLang modeling language (section 2.1.1),
describe the graph primitive construct (section 2.1.2), the model specification
mechanism (section 2.1.3) and the geometric primitives that underly the graph
primitives (section 2.1.4).

2.1.1 Set-Of-Rules on a Graph A probabilistic model expresses the joint
probability distribution associated to a set of variables. One question that arises
when designing a software framework for probabilistic reasoning is how to define
a numerical representation of a probabilistic model and whether such represen-
tation enables the construction of efficient inference algorithms. Let us consider
the following approaches to the numerical representation of probabilistic models:

1. tabulation: A table expresses the probability of each possible state of the
variables (in case of discrete variables).

2. symbolic representation: The joint probability distribution of the variables
is expressed by a mathematical formula.

3. set-of-rules: A computer program returns the joint probability for a given
configuration of the variables.

4 S. Pedemonte et al.

Tabulation is only viable for small problems and for discrete variables. Symbolic
representation of probabilistic models is an active research topic [8], enabling low
memory representations of models and the automated computation of the deriva-
tives of the probability functions via symbolic expression manipulation. While
the symbolic approaches yield efficient and flexible tools for probabilistic reason-
ing [10], their use is currently limited to small problems where the system matri-
ces can be explicitly evaluated. The third approach consists in writing a computer
program that evaluates the probability associated to a given configuration of the
variables and eventually the log-conditional probability functions associated to
subsets of the variables and the derivatives of the log-probability functions. The
most common approach to probabilistic modeling in medical imaging is based on
the set-of-rules representation. One describes the model in symbolic form with
pen-and-paper and manipulates the symbolic expressions to obtain expressions
of the required conditionals, marginals and derivatives. A computer program
that evaluates such expressions is then crafted. The conditional independencies
of a probabilistic model can be represented by means of a graph (i.e. a proba-
bilistic graphical model). The set of conditional independencies corresponds to
the factorization of the joint probability distribution associated to the variables
of the model. The explicit representation of the set of conditional independen-
cies via a graph provides insight of the probabilistic model. The graph is often
utilized, therefore, in order to aid the pen-and-paper symbolic expression ma-
nipulation and crafting of the computer programs: through the properties of the
graph, one can tell which variables (Markov blanket) and factors contribute to
the conditional probability distribution of a subset of the variables. The iLang
framework adopts the model representation approach 3, in conjunction with a
data structure based on the graph of the probabilistic model. Informing the com-
puter software of the conditional independence structure of the model introduces
many advantages. The combination of the set-of-rules approach and the graph,
while allowing maximum flexibility, simplifies the model specification process,
provides a mechanism for code encapsulation and provides a data structure suit-
able for the automated synthesis of inference algorithms. The core data-structure
representing an iLang model is a graph, defined by a set of graph primitives. A
graph primitive defines the interaction between a set of variables in terms of sets
of rules for the computation of log-conditional probabilities and their deriva-
tives, as described in the next section. Pen-and-paper symbolic manipulation is
still part of the model definition process, however occurring only at the stage of
designing a graph primitive.

2.1.2 Graph Primitives A graph primitive of the iLang modeling language
expresses the interaction between a set of variables. Variables associated to a
graph primitive are objects with a name property and a value property. The
graph primitive object exposes, for each of the internal variables, one to four
methods that return 1) the log conditional probability; 2) the gradient of the log
conditional probability; 3) the Hessian of the log conditional probability; 4) the
proximity map of the log conditional probability. This is depicted in Fig. 2. A

An Inference Language for Imaging 5

LOG CONDITIONAL PROBABILITY

GRADIENT LOG CONDITIONAL PROBABILITY

HESSIAN LOG CONDITIONAL PROBABILITY (SPARSE)

PROXIMAL OPERATOR LOG CONDITIONAL PROBABILITY

Fig. 2. Interface of a graph primitive: a graph primitive encodes the dependence
amongst variables by specifying methods to compute the log conditional probabilities
of each variable. Optionally, the graph primitive exposes methods to compute the first
and second derivatives and the proximal operator of the log conditional probabilitties.

graph primitive is defined by subclassing a base object of type GraphPrimitive;
defining a dictionary with the names of the variables; a dictionary that speci-
fies the directed or indirected graph structure; and by implementing interface
methods according to a simple predefined naming convention. The example that
follows specifies a graph primitive that encodes a multivariate Gaussian proba-
bility distribution p(x|mu, cov) = N (x;mu, cov):

class MultivariateGaussian(GraphPrimitive):
variables = {’x’:’continuous ’,’mu’:’continuous ’,’cov’:’continuous ’}
dependencies = [[’mu’,’x’,’directed ’],[’cov’,’x’,’directed ’]]
preferred_samplers = {’x’:[’HamiltonianMCMC ’]}

graph primitive interface
def log_conditional_probability_x(self ,x):

hessian = self._compute_hessian ()
mu = self.get_value(’mu’)
return -.5*numpy.dot(numpy.dot((x-mu),hessian),(x-mu).T)

def log_conditional_probability_gradient_x(self ,x):
hessian = self._compute_hessian ()
mu = self.get_value(’mu’)
return -.5*numpy.dot((x-mu),hessian+hessian.T)

def log_conditional_probability_hessian_x(self ,x):
hessian = self._compute_hessian ()
return hessian

utility:
def _compute_hessian(self):

cov = self.get_value(’cov’)
self._hessian = numpy.linalg.inv(cov)
return self._hessian

Note, in the example, that variables are defined as discrete or continuous. Further
classes of the iLang variables will be added in future implementations, such as
symmetric, positive definite and chordal matrices. The graph primitives currently
implemented in iLang are reported in Fig. 3.

2.1.3 Model Specification A model is specified by instantiating an object
of type GraphicalModel and naming the variables of the model. The dependence
between the variables is specified by connecting the variables by means of graph
primitives, as in the example that follows.

6 S. Pedemonte et al.

QUADRATIC MRF EMISSION IMAGING TRANSMISSION IMAGING GAUSSIAN FIELD, MOTION
 (A) (F) (E) (D)

activity

motion

counts atten.

intensity

atten.

motion

beta x beta

x

motion

y

TOTAL VARIATION
 (C)

beta x

L1-NORM

beta x

 (B)

Fig. 3. Graph primitives currently implemented in iLang.

graph = ilang.GraphicalModel ()
graph.add_variables ([’var1’,’var2’,’var3’])
graph.add_model(MultivariateGaussian ,{’var1’:’x’,’var2’:’mu’,’var3’:’cov’})
graph.set_given ({’var2’:numpy.zeros ([1,5]),’var3’:numpy.eye (5)})

In this example, the object graph represents a probabilistic graphical model with
3 variables: var1, var2, var3; var2 and var3 have given values and var1 is a 5-
dimensional random variable with probability distribution p(var1|var2, var3) =
N (var1; var2, var3). Note that the correspondence between the variables of the
graph and the inner variables of the graph primitive has been specified in the
add model function call. The graph object exposes the methods that are required
to perform inference; the internal machinery of the graph object translates the
names of the variables, calling the methods of the graph primitives as required.

2.1.4 Geometric Primitives The graph primitives for imaging make use,
internally, of efficient GPU-accelerated routines that perform common image
processing tasks. Currently:

– Rigid spatial transformations
– Ray-tracing
– Image re-sampling
– FFT-IFFT
– Finite difference operator

Such geometric primitives enable a wide range of models and algorithms. The
experiments section highlights how the spatial transformation, resampling and
finite difference geometric primitives come into play to define a graph primitive
that enables spatio-temporal tomography.

2.2 The Inference Engine

The probabilistic graph object provides all the methods required to perform
inference. These include (proxy) methods to compute the log conditional prob-
ability of each of the variables and their first and second derivatives; methods
to compute properties of the graph, such as the global Markov properties; and
methods for the manipulation of the graph. Currently, the iLang framework
implements an algorithm based on the Alternating Direction Method of Multi-
pliers (ADMM) for maximum probability inference and an algorithm based on
Hamiltonian Markov Chain Monte Carlo for posterior sampling.

An Inference Language for Imaging 7

2.2.1 Maximum Probability The algorithm for maximum probability es-
timation is based on a combination of the Iterated Conditional Modes (ICM)
[7] algorithm and the ADMM algorithm [13]. The value of the variables of the
model that maximizes the joint probability is computed by maximizing, in turn,
the conditional probability distribution of each of the variables (ICM). The op-
timization of each conditional probability is performed by means of the ADMM
algorithm. ADMM, developed in the context of convex optimization [13], has the
advantage of enabling the use of non-differentiable factors, such as the models
(B) and (C) in Fig. 3, using the proximity operators of the factors in place of the
first derivatives. In order to apply ADMM to optimize the log conditional prob-
ability for each of the variables, the inference engine performs a transformation
of the graph, consisting in extracting the Markov blanket of the variable and
transforming it into a Forney-style augmented factor graph [14], as exemplified
in Fig. 4 for variable x. The ADMM algorithm then consists in a message passing
algorithm over the factor graph. The Forney-style factor graph represents the
augmented Lagrangian of the local optimization problem expressed in consen-
sus form [13, 14]. The Forney-style factor graph is a bipartite graph obtained by
placing on the right side one node for each factor of the cost function (3 nodes
in the example, corresponding to 3 graph primitives) and one node on the left
side, encoding an equality constraint. The factor graph in this form expresses
the augmentation of the optimization problem with variables x1, x2, x3 (see Fig.
4-right). The point of the augmentation is that edge variables attached to the
same equality constraint must ultimately equal each other, but they can tem-
porarily be unequal while they separately try to satisfy different cost functions
on the left. Finally, the problem is augmented with one variable for each edge
connecting the two sides of the bipartite factor graph: the Lagrangian multipli-
ers y1, y2, y3. The ADMM algorithm consists in the exchange of the following

PRIMITIVES

XY

WV

ZK

XY

WV

ZK

X1

Y

W

Z

K

X2

X3

X

Y1

Y3

Y2

LOCAL UNDIRECTED GRAPH LOCAL FACTOR GRAPH

Fig. 4. Transformations of a probabilistic graphical model. Left: a directed probabilistic
graphical model; center: moralized undirected gaph; right: Forney-style factor graph
utilized by the inference engine of iLang.

8 S. Pedemonte et al.

messages (see [13] for the derivation of the messages):

xn+1
k := arg min

v
fk (v) +

ρ

2
‖v − ynk + xn‖22 (1)

xn+1 :=
1

N

N∑
k=1

xn+1
k +

1

ρN

N∑
k=1

ynk (2)

yn+1
k := ynk + xn+1

k − xn+1, (3)

where fk is the k-th factor (with k = {1, 2, 3} in the example) and ρ is the
augmented Lagrangian regularization parameter (the default value is ρ = 0.1,
see [13] for a discussion on the selection and adaptation of ρ). The splitting
introduced by data augmentation enables the use of non-smooth factors. If fk
is smooth (the graph primitive corresponding to factor k exposes a method to
compute the gradient of the log conditional probability), the inference engine per-
forms the minimization using, by default, the L-BFGS Quasi-Newton algorithm,
or the Newton algorithm if the graph primitive exposes a method to compute
the Hessian of the log conditional probability. If the factor is non-smooth, the
inference engine sets xn+1

k by evaluating the proximity operator of fk, calling
the proximity operator method of the underlying graph primitive.

2.2.2 Posterior Sampling The posterior sampling algorithm currently im-
plemented in iLang is based on Markov Chain Monte Carlo. Each of the variables
of the graph are sampled in turn by sampling from their conditional probabil-
ity distributions (Gibbs sampling). The samples from each of the conditional
probability distributions are obtained by means of various MCMC techniques,
depending on the methods exposed by the factors of each conditional probability
distribution. A local factor graph analogous to Fig. 4-right is constructed; if all
the graph primitives connected to variable x expose methods to compute the
gradient of the conditional probability of x, the MCMC algorithm uses Hamilto-
nian dynamics [15] with gradient equal to the sum of the gradients returned by
each primitive. The local set of variables is augmented with momentum variable
q and each new sample of x is obtained by sampling a candidate of q from a
normal probability distribution and then by sampling x conditionally to q as
follows (see [15]):

qn+1|xn ≈ p(qn+1|xn) = p(qn+1) = N
(
qn+1|0,M

)
(4)

xn+1|qn+1 ≈ p(xn+1|qn+1), (5)

samples of xn+1 from p(xn+1|qn+1) are obtained by integrating the Hamilto-
nian dynamics over fictitious time τ from the initial values qn+1 and xn. The
integration is performed using the leapfrog method:

q(τ +
ε

2
) = q(τ) +

ε

2
∇xf (x(τ)) (6)

x(τ + ε) = x(τ) + εMq
(
τ +

ε

2

)
(7)

q(τ + ε) = q(τ +
ε

2
) +

ε

2
∇xf (x(τ + ε)) , (8)

An Inference Language for Imaging 9

with a certain number of steps, with step size ε, to give proposed moves x∗ and
q∗ and accepting or rejecting according to the Metropolis Hastings criterion, as
specified in [15]. Here ∇x denotes the gradient of factor f and M is a weight
matrix. The weight matrix, by default, it set to the identity, unless all the factors
expose methods to compute the Hessian, in which case it is set to the sum of the
Hessian terms, producing a piecewise constant Riemannian Manifold Hamilto-
nian MCMC algorithm [15]. Although the choice of the parameter ε is in general
critical in order to obtain high acceptance ratios, especially in high dimensions,
setting M to the Hessian of the factor f , as discussed in [15], enabling the algo-
rithm to scale to high dimensions and relaxes the choice of ε. This is the default
mode of iLang if all the factors expose the Hessian method. The default value
of ε is 0.1.

3 Motion-aware Positron Emission Tomography

In PET imaging, the low number of photon counts per unit time imposes long
acquisition times (several minutes). During the acquisition, the subject moves,
determining blurring and ghosting effects in the reconstructed images. Although
attempts have been made to measure the motion of the subject during the ac-
quisition of the PET data by using motion detection devices, the problem is still
largely unsolved. The problem can be formulated in the probabilistic framework
as follows, in the case, applicable to brain imaging, of rigid motion. Although the
activity in the imaging volume changes over time due to motion, let us assume,
disregarding pharmacokinetics in this first instance of spatio-temporal model,
that the rate of emission in the frame of reference that moves rigidly with the
head of the patient is constant. Assuming that the only source of uncertainty
associated to the measurements is the inherent uncertainty due to photon count-
ing, the conditional probability distribution associated to the photon counts at
time t, given the motion parameters at time t and the activity in the reference

frame, is a Poisson distribution. Let us denote with q
[t]
d the photon counts along

line of response (LOR) d at time t; with z[t] = {z[t]
1 , z

[t]
2 , . . . , z

[t]
d } the vector of

the photon counts at time t; with A = {abd} the matrix of the probabilities that
an event emitted in voxel b is detected in LOR d; with Rγ[t] the rigid trans-

formation at time t, parameterized by parameters γ[t] and with P the Poisson
distribution:

p(z[t]|λ,Rγ[t]) =
∏
d

P(
∑
b

abd[Rγ[t]λ]b, z
[t]
d) (9)

Let us assume a sparsifying total-variation prior probability distribution for the
activity:

p(λ|β) ∝ e−β‖∇λ‖1 (10)

Denoting by 1̄ the vector of 1’s, the gradient of eq. (9) is given by (see [5]):

∂

∂λb
log p(λ|z[t], Rγ[t]) = −

∑
t

RTγ[t]A
T 1̄ +

∑
t

RTγ[t]A
T z[t]

ARγ[t]λ
(11)

10 S. Pedemonte et al.

Let us assume that the motion parameters γ[t] are unpredictable, i.e. that the
motion parameter γ[t] is a priori independent from the motion parameter γ[t′],
t 6= t′. By the chain rule of differentiation, the derivative of the log conditional
probability of the i-th motion parameter at time t is given by:

∂ log p(γ[t]|z[t], λ)

∂γ
[t]
i

=
∑
d

−

[
A

[
∂RT

γ[t]λ

∂γ
[t]
i

]]
d

+ z
[t]
d

[
A

[
∂RT

γ[t]
λ

∂γ
[t]
i

]]
d[

ART
γ[t]λ

]
d

(12)

Optimization of the joint probability with respect to the model parameters is
not trivial due to the non-differentiability of the prior and to the non-negativity
constraint (here not expressed explicitly) of λ. In iLang, the calculations of eq.
(11) and (12) are encapsulated in the graph primitive (D) of Fig. 3 and the
graph primitive (C) of Fig. 3 implements the proximity operator for the total
variation prior (i.e. soft thresholding of the image gradient - see [13]). The model
is encoded in iLang as follows:

graph = ilang.GraphicalModel ()
graph.add_variables(’lambda ’)
for t in range(Nt):

graph.add_variable(’z’+str(t))
graph.add_variables(’gamma’+str(t))
graph.add_model(ilang.Primitives.PET_rigid_motion , ..

{’lambda ’:’activity ’,’gamma ’+str(t):’motion ’,’z’+str(t):’counts ’})
graph.set_given(’z’+str(t))
graph.set_value(’z’+str(t), sinograms[t])

graph.add_variable{’beta’}
graph.add_model(ilang.Primitives.TotalVariation , ..

{’lambda ’:’x’,’beta’:’sparsity ’})
graph.set_given(’beta’)
graph.set_value(’beta’ ,0.1)

Fig. 5. Graph generated by iLang for motion-aware Positron Emission Tomography.

where sinogram is a list of Nt sinogram arrays. This produces the graph of Fig.
5. Inference is performed as follows:

sampler = ilang.Sampler(graph)
sampler.maximum_probability(max_iterations =100)
activity_estimate = sampler.get_last_sample(’lambda ’)

An Inference Language for Imaging 11

Fig. 6. Motion-Aware PET: Reconstructions obtained by imaging an FDG-filled cap-
illary source wrapped around a pineapple. From left to right: no motion correction;
motion estimation; motion estimation and total-varation prior. Top row: volume ren-
dering; bottom row: representative slice - overlay of PET and MR.

4 Conclusion

The iLang software framework enables probabilistic reasoning in volumetric
imaging, simplifying the definition of complex imaging models. Endowing the
numerical representation of probabilistic models with a graph enables the auto-
mated synthesis of efficient inference algorithms. The inference engine of iLang
enables the definition of non-smooth constraints such as non-negativity and spar-
sity. The iLang software constitutes a unified framework for multi-modal imag-
ing that enables the integration of image formation, registration, de-noising and
other image processing tasks. The application reported in section 3 constitutes a
novel powerful imaging paradigm, where motion is considered a nuisance variable
and estimated from the PET emission data under the assumption of sparsity.

5 Download

The iLang software is distributed with a permissive open source license at http:
//ilang.github.io

12 S. Pedemonte et al.

6 Acknowledgements

This research was supported by the NIH NCRR (P41-RR14075), the NIH NIBIB
(R01EB013565), and TEKES (ComBrain).

The authors would like to thank Paulina Golland and the MIT EECS/CSAIL
journal club for the useful introduction to the ADMM algorithm.

References

1. Leemput, K.V. Maes, F. Vandermeulen, D. Suetens, P.: Automated model-based
tissue classification of MR images of the brain. In: In: IEEE Trans Med Imaging.
Oct. 1999, 18(10), 897–908.

2. Ashburner, J., Friston, K.: Unified segmentation. In: Neuroimage, 26(3), 839–51,
2005.

3. Fischl, B. Salat, D.H. Van Der Kouwe, A. Makris, N. Segonne, F. Quinn, B.T.
Dale, A.M.: Sequence-independent segmentation of magnetic resonance images.
In: Neuroimage, 23, 69–84, 2004.

4. Venkataraman, A. Rathi, Y. Kubicki, M. Westin, C.F. Golland, P. Joint modeling
of anatomical and functional connectivity for population studies. In: IEEE Trans
Med Imaging. Feb. 2012, 31(2), 164–82.

5. Pedemonte, S. Bousse, A. Hutton, B.F. Arridge, S. Ourselin, S.: 4-D generative
model for PET/MRI reconstruction. In: MICCAI 2011, 14(Pt 1), 581–8.

6. Menze, B.H. Leemput K.V., Lashkari, D. Weber, M.A. Ayache, N. Golland, P.:
A Generative Model for Brain Tumor Segmentation in Multi-Modal Images. In:
Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (Eds.) MICCAI 2010, Part
II, LNCS 6362, pp. 151–159. Springer-Verlag Heidelberg 2010.

7. Besag, J.: On the Statistical Analysis of Dirty Pictures. In: J. of the Royal Stat.
Soc. Series B (Methodological), 48(3), 259-302, 1986.

8. Bergstra, J. Breuleux, O. Bastien, F. Lamblin, P. Pascanu, R. Desjardins, G.
Turian, J. Warde-Farley D. and Bengio, Y.: Theano: A CPU and GPU Math
Expression Compiler. In: Proceedings of the Python for Scientific Computing Con-
ference (SciPy) 2010. Austin, TX.

9. Goodman, Noah, et al.: Church: a language for generative models. In: arXiv
preprint arXiv:1206.3255, 2012.

10. Patil, A. Huard, D. and Fonnesbeck, C.J.: PyMC: Bayesian Stochastic Modelling
in Python. In: J. Stat. Softw. Jul 2010; 35(4): 1–81.

11. Stan Modeling Language Users Guide and Reference Manual, 2014. http://mc-
stan.org/

12. Lunn, D.J. Thomas, A. Best, N. Spiegelhalter, D.: WinBUGS – a Bayesian mod-
elling framework: concepts, structure, and extensibility. In: Statistics and Comput-
ing, 10:325–337.

13. Boyd, S. Parikh, N. Chu, E. Peleato, B. and Eckstein, J.: Distributed Optimization
and Statistical Learning via the Alternating Direction Method of Multipliers In:
Foundations and Trends in Machine Learning, Vol. 3, No. 1 (2010) 1–122.

14. Forney Jr, G.D.: Codes on graphs: Normal realizations. In: IEEE Transactions on
Information Theory, 47(2):520548, 2001.

15. Girolami, M. and Calderhead, B.: Riemann Manifold Langevin and Hamiltonian
Monte Carlo Methods. In: Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology) 73.2, 123–214, 2014.

