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Abstract—System designs in Single Photon Emission Tomog-
raphy (SPECT) can be evaluated based on the fundamental
trade-off between bias and variance that can be achieved in the
reconstruction of emission tomograms. This trade off can be
derived analytically using the Cramer-Rao type bounds, which
imply the calculation and the inversion of the Fisher Information
Matrix (FIM). The inverse of the FIM expresses the uncertainty
associated to the tomogram, enabling the comparison of system
designs. However, computing, storing and inverting the FIM is
not practical with 3D imaging systems. In order to tackle the
problem of the computational load in calculating the inverse of
the FIM, a method based on the calculation of the Local Impulse
Response and the variance, in a single point, from a single row
of the FIM, has been previously proposed for system design.
However this approximation (circulant approximation) does not
capture the global interdependence between the variables in shift-
variant systems such as SPECT, and cannot account e.g. for data
truncation or missing data. Our new formulation relies on sub-
sampling the FIM. The FIM is calculated over a subset of voxels
arranged in a grid that covers the whole volume. Every element
of the FIM at the grid points is calculated exactly, accounting for
the acquisition geometry and for the object. This new formulation
reduces the computational complexity in estimating the uncer-
tainty, but nevertheless accounts for the global interdependence
between the variables, enabling the exploration of design spaces
hindered by the circulant approximation. The GPU accelerated
implementation of the algorithm reduces further the computation
times, making the algorithm a good candidate for real-time
optimization of adaptive imaging systems. This paper describes
the subsampled FIM formulation and implementation details.
The advantages and limitations of the new approximation are
explored, in comparison with the circulant approximation, in
the context of design optimization of a parallel-hole collimator
SPECT system and of an adaptive imaging system (similar to
the commercially available D-SPECT).

Index Terms—Reconstruction Image Quality, Fisher Informa-
tion, D-SPECT, Emission Tomography, System Design.
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I. INTRODUCTION

Optimization of the system design in Single Photon Emis-
sion Tomography (SPECT) is a difficult problem due to
the computational complexity and to the challenges in the
mathematical formulation. In recent years there has been an
increasing interest in optimizing system designs prospectively,
by computer simulation, at low computational cost. Such
optimization problems include the choice of a particular type
of detector and collimator and tuning of their parameters,
as well as the choice of the number of cameras and their
position. While such class of design optimization problems
may be referred to as hard optimization, the development of
adaptive SPECT systems has introduced a second class of soft
optimization problems, where the parameters of the imaging
system may be modified during acquisition, in order to image
certain desired properties of the underlying object and to adapt
to the imaging conditions.

In the probabilistic framework, a reconstruction algorithm
provides an estimate of the radioactivity distribution. Such
estimation is uncertain, due to the limited amount of in-
formation that the scan may acquire. Characterization of
the uncertainty associated with the measurement of activity
enables the comparison of system designs.

A SPECT imaging system can be evaluated based on its
performance for a specific imaging task, such as in lesion
detection [29] [30] [31] [32] [33] [34]. Task specific system
optimization strategies have been defined and explored by Bar-
rett et al. [28]. In these studies the image quality assessment is
based on the performance of human and numerical observers
in classification, such as the detection of a certain class of
tumours. However optimization criteria that are not dependent
on specific classification tasks are advisable in order to design
systems that perform well in a number of possibly unforeseen
tasks.

SPECT systems may also be evaluated based on the fun-
damental trade-off between bias and variance that can be
achieved in the reconstruction of emission tomograms [20]
[1] [2] [4]. Such tradeoffs may be derived analytically using
the Cramer-Rao type bounds [9] [18] [19] which imply the
calculation and the inversion of the Fisher Information Matrix
(FIM). In the following we employ the Fisher Information
Matrix formalism to characterize the uncertainty in the recon-
struction. Unfortunately, computing, storing and inverting the
FIM is not feasible for the typical matrix size of 3D imaging
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systems.
In order to tackle the problem of the computational load

in inverting the FIM, an approximation has been previously
proposed. Qi et al. [5] argued that if we are only interested
in calculating the properties of an estimator in a single
voxel i, it is acceptable to ignore the non-stationarity of the
FIM. The computations are done for voxel i, and therefore
only the i-th row of the FIM needs to be calculated. This
local approximation of the FIM, is obtained by replacing all
rows of the FIM with the shifted version of its i − th row
and then by inverting this shift-invariant matrix in order to
estimate the variance in each voxel i. Consequently the FIM
simply reduces to a circulant matrix and this approximation is
referred to as the circulant approximation. Using the circulant
approximation, in order to estimate the variance in the whole
imaging volume, calculations must be therefore be performed
for each voxel independently.

However, since the tomographic imaging system measures
the integral along lines that traverse the entire imaging volume,
the estimate of the activity in a given voxel and its uncertainty
are related to the estimate and to the uncertainty in every other
location. Since, however, in a SPECT system with parallel
hole (PH) collimators, the counts in the detector bins, are the
expressions of the integral of the emitted photons originating
from a conical volume (and not simply from a line), the
interdependence between the voxels becomes even more com-
plex. The full FIM accounts for such complex interdependence
between all the voxels in the imaging volume of shift-variant
systems such as SPECT; whereas the aforementioned circulant
approximation makes use of a single row of the FIM and does
not capture such interaction (see section V).

In this paper, we introduce a novel algorithm for efficient es-
timation of the uncertainty in the reconstruction, based on the
FIM formalism. Our new formulation relies on sub-sampling
the FIM. The FIM is calculated over a subset of voxels
arranged in a grid that covers the whole volume. Every element
of the FIM at the grid points is calculated exactly, accounting
for the acquisition geometry and for the object, without further
approximation. This new formulation, presented in section
II-C, reduces the computational complexity in inverting the
FIM but nevertheless accounts for the global interdependence
between the variables.

The aim of this article is to describe the new approximation
and to explore its use for the optimization of SPECT systems;
emphasizing how it enables us to explore the design of
highly shift variant systems (as a result of distance dependent
resolution, data truncation or adaptive data sampling). Such
systems include the standard rotating camera with parallel hole
collimator and an adaptive system for cardiac imaging, similar
to the commercially available D-SPECT.

This article is organized as follows: Section II-A describes
the measurement model and the reconstruction model. Section
II-B presents a deterministic method for the estimation of the
uncertainty in the reconstruction based on the FIM formalism.
Section II-C introduces the new methodology for approximate
and efficient calculation of the FIM. Section II-D describes
in detail the efficient implementation of the algorithm for the
calculation of the FIM. Section II-E introduces a figure of

merit for the estimation of the image quality (based on the
fundamental trade-off between bias and variance) and its appli-
cation to system design. Section II-F summarizes the reference
statistical method for the calculation of the uncertainty. The
statistical method involves the reconstruction of a large number
of noise realizations of the same projection data set and is
therefore very time consuming. Section III describes several
simulation studies, with the purpose of illustrating our novel
methodology. We show how our new algorithm applies to the
optimization of a parallel hole collimator for SPECT and how
it can be employed to evaluate the reconstructed image quality
in the case of truncated projection data and for different acqui-
sition protocols for the D-SPECT system. In order to illustrate
the reliability of our approximation, all the results presented in
this paper are compared with the reference statistical method
and with the circulant approximation method. Moreover we
evaluate the effect of the choice of the subsampling scheme
for the optimisation of the parameters of the aforementioned
imaging systems. The results are presented in section IV and
discussion of the usefulness and limitations of the algorithm
are presented in section V.

II. METHODS

A. Measurement Model and Reconstruction Model

The 3-dimensional continuous function expressing the rate
of emission of γ-radiation is discretized using a voxel basis,
where λ = [λ1, ..., λN ]T denotes the vector of emission rates,
underlying the projection measurements ν = [ν1, ..., νM ]T .
Let x and y denote the in-plane coordinates, z represents
the axial coordinates of the discretized volume, Nx, Ny ,
Nz denote the number of voxels along each direction and
N = Nx × Ny × Nz denotes the total number of voxels.
The probability to observe measurements ν when the emission
rate is λ, is expressed by the conditional probability distribu-
tion function p(ν|λ). In emission tomography, the projection
measurements ν, when λ is known, can be described as the
realization of independent random Poisson processes, whose
expected outcomes are given by the following discrete linear
model:

νd(λ) =

N∑
i=1

hidλi (1)

ν(λ) = Hλ (2)

the matrix H is the M × N system matrix whose elements
{hid} represent the probability that photons emitted from
voxel i are detected in detector unit d. The system matrix
models the propagation and detection of un-scattered photons,
encompassing the depth-dependent response of the collimator,
the position-dependent geometric efficiency, the scanning pat-
tern of the detectors and attenuation through the propagating
medium. In this model we do not take into account the
contribution of scattered photons, though the system matrix
H may, in principle, encompass scatter events.

An estimator is a rule for calculating an estimate of the
unknown variable (the radio-pharmaceutical density λ) given
the observations (the photon counts ν).
In the case of emission tomography, where the conditional
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probability distribution associated with photon counting is
Poisson distributed with expectation Hλ:

p(νd|λ) =
e−[Hλ]d([Hλ]d)

νd

νd!
(3)

the Maximum A Posteriori (MAP) estimate consists in se-
lecting the value of the unknown variable that maximizes the
following cost function:

λ̂ = arg max
λ≥0

Φ(λ,ν) = arg max
λ≥0

L(λ,ν)− βR(λ) (4)

where the log likelihood function L, is given by:

L(λ,ν) = log p(ν|λ) =
∑
d

[Hλ]d−νd log([Hλ]d) + log νd!

(5)
In this paper we restrict the discussion to the quadratic penalty
function R(λ) = (1/2)λTRλ, where R is the Hessian of the
space-invariant penalty used for regularization and β is the
regularization parameter.

B. Estimation of the uncertainty in the reconstruction: the
Fisher Information Matrix

In this section we summarize the deterministic approach
for the estimation of the uncertainty in the reconstruction.
Closed form analytical expressions of the statistical properties
(such as mean and variance) of the MAP estimator defined
in the previous section are unavailable. The absence of an
explicit analytical expression makes it difficult to study the
noise properties of the estimator λ̂, except through numerical
simulations (see section II-F).

A SPECT system may be evaluated based on the funda-
mental bias variance trade-off of the estimator and one would
like to be able to easily study the estimator characteristics
over a range of system parameters. In such cases, numerical
simulations can be prohibitively expensive and therefore it is
useful to have approximate expressions of the covariance of
the MAP estimator.

The distribution of the MAP estimates is approximated
by a Normal distribution, parameterized by the covariance
matrix Γ. Under such approximation, Fessler has derived the
expression of Γ for the log-likelihood function of the Poisson
model [11]. Using the first order Taylor series approximation
of (4) around the MAP estimate λ̂ and then applying the chain
rule, we can derive the covariance matrix of the MAP estimator
to be:

Γ(λ̂) ≈ [F + β ·R]−1 · F · [F + β ·R]−1 (6)

where F is the Fisher Information Matrix of the likelihood.
Differentiating the logarithm of the Poisson imaging model
(3) [8]:

Fij(λ) = −E
[

δ2

δλjδλi
ln p(ν|λ)

]
=

M∑
d

hidhjd
σ2
d

=

M∑
d

hidhjd
νd

=

M∑
d

hidhjd∑N
b hbdλb

(7)

where the variance of the m-th measurement σ2
d has been

substituted with the noiseless projection data νd.

C. Efficient Calculation of the Fisher Information Matrix: A
Subsampled version of the FIM

In the previous section we have described how the Fisher
Information Matrix can be employed to characterize the un-
certainty of the reconstruction. Unfortunately computing the
FIM inverse is intractable since we are dealing with a large
matrix of size N ×N = (Nx ×Ny ×Nz)2.

A computationally efficient approximation in calculating the
inverse of the FIM has been previously proposed for the design
of space-variant penalties that yield to space-invariant impulse
response functions [15] [16] [5]. Qi et al. [5] argued that if
it is reasonable to assume that the FIM varies slowly with
position and if one is interested in calculating the effects of
a quadratic prior in terms of bias and variance in a voxel i,
then it is acceptable to ignore the shift-variance of the FIM.
The computations are done for voxel i and therefore only
the i-th row of the FIM needs to be calculated. This local
approximation of the FIM is obtained by replacing all rows
of the FIM with the shifted version of its i− th row and then
by inverting this shift-invariant matrix in order to estimate the
variance in each voxel i. This approximation is referred to
as the circulant approximation, since it simply reduces the
FIM to a circulant matrix. This makes the computations in
(6) tractable as a circulant matrix can be diagonalized using
a Discrete Fourier Transform (DFT). It is then possible to
rewrite the formulas of the covariance for a voxel i in Fourier
domain as [15]:

Γi(λ̂) ≈ F−1
{

F{HTD[1/νd]Hei}
|F{HTD[1/νd]Hei}+ F{βRei}|2

}
(8)

where � denotes element-by-element multiplication and the
division is an element-by-element division; ei is the unit basis
vector for the voxel i. The function F{·} takes the DFT of its
argument and D[·] produces a diagonal matrix whose diagonal
entries are the reciprocal of the noiseless projection data νd.
The complex exponentials, represented by the term [F{ei}]2,
incorporate the appropriate shifts so that the covariance func-
tion is “centered” at location i. From (8) we can see how the
approximated estimate of Γ for a single voxel position i “can
be computed with a projection, a backprojection and a few fast
Fourier transforms” [20]. The aforementioned method is well
suited for the calculation of the uncertainty for systems whose
response can be approximated as shift-invariant; or in the case
one wants to estimate the local effects that a penalty function
has on bias and variance. However this method does not
account for the global interdependence between the estimates
in all the voxels and therefore can not incorporate the effects
of long-range correlations (e.g., evaluation of the effects of
data truncation or missing data).

In this article we propose a different approach for calcu-
lating the inverse of the FIM. This formulation reduces the
computational complexity in inverting the FIM but never-
theless accounts for the global interdependence between the
variables. The FIM is calculated over a subset of the voxel
indexes G ⊂ [1, . . . , N ] arranged in a grid that covers the
whole volume. We define a subsampled version of the FIM
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calculated over a subset λG of the full set of parameters λ:

FGij =

M∑
d=1

hidhjd∑N
b=1 hbdλb

with i, j ∈ G (9)

This is equivalent to saying that, in the estimation of the
covariance, we are accounting for the interdependence between
a subset of voxels i, j ∈ G only, assuming that, for the
remaining voxels i, j /∈ G, the MAP estimate λ̂ is equal to
the true value of λ.
The approximate analytical calculation of the covariance is
simply obtained by substituting the FIM with its subsampled
(9) version in the definition of the covariance matrix presented
in (6):

Γ(λ̂G) ≈ [FG + β ·RG]−1 · FG · [FG + β ·RG]−1 (10)

The number of elements in the full FIM equals N2, whereas
the number of elements of the subsampled FIM equals N2

G;
therefore reducing the computational burden in inverting the
subsampled FIM.

The Hessian of the quadratic penalty R is not dependent on
λ and therefore can be precalculated. Analogously to F , the
subsampled version of the quadratic penalty RG is obtained
by selecting the elements of the matrix R that correspond to
the points in the grid.

Two examples of grids are pictured in Fig. 1, for a small
imaging volume of 6 × 6 × 6 voxels. In Fig. 1 A the grid
accounts for the interdependence between every point in the
imaging volume, in Fig. 1 B, the grid accounts for the
interdependence between 1/8 of the voxels in the imaging
volume. This model allows the user to design the grid and
therefore to define the degree of approximation in the calcu-
lation of the FIM. In section V, visual representations of the
FIM and of the Covariance matrix are presented for the full
FIM, the subsampled FIM and the circulant approximation. A
discussion on how the missing FIM entries between the grid
points affect the accuracy of the results is also presented in
section V.

D. GPU Accelerated Implementation

Every element of the FIM at the grid points is calculated
exactly, accounting for the acquisition geometry and the object
without further approximation. If the grid has NG nodes, the
FIM is of size NG × NG and symmetrical, so filling the
matrix requires the computation of 1

2N
2
G + 1

2NG elements.
Naive computation of the FIM requires one projection for the
denominator of (9) and M sums of products (SOPS) for each
of the 1

2N
2
G + 1

2NG elements of the half FIM. The proposed
algorithm is inspired by the rotation-based algorithm proposed
by Zeng and Gullberg [6]. The collimator-detector response is
captured by a depth dependent Point Spread Function (PSF).
Information being additive over the detector bins, the FIM
element Fij is the sum of Fmij contributions from the M
camera positions indexed with m = 1, · · · ,M . The algorithm
is based on interpolation of the activity and of the FIM grid on
a regular grid aligned with each camera. By re-interpolating
the activity and the FIM grid on a regular grid, the PSF can be
applied more efficiently in the frequency domain as all points

Fig. 1. Example of grids for the estimation of the uncertainty. A (top left) the
grid accounts for the correlation between every point in the imaging volume
(full FIM). B (top right) the grid accounts for the correlation between 1/8 of
the voxels in the imaging volume (subsampled FIM). C (Bottom right) The
central plane of the grid displayed in A. D (Bottom left) The central plane of
the grid displayed in B.

that are at a given distance lie on the same plane. The PSF is
non-zero within a box X (see Fig. 2). The algorithm for the
evaluation of the elements of the FIM consists of the following
steps:

1) Compute projection of λ for each camera position.
2) Compute FIM elements for each camera position:
a. Re-sample the FIM grid positions on the voxel grid

parallel to the camera by tri-linear interpolation.
b, For each pair of points i, j in the FIM grid

i. Compute coordinates of the box Z, on the camera
plane, where the two PSFs Xi Xj intersect (if they
intersect).

ii. If Xi and Xj intersect, update the FIM element by
integrating (9) over the intersection box Z.

The algorithm is implemented in the CUDA programming
language for parallel execution on Graphics Processing Units
(GPU). Tri-linear re-sampling is performed in hardware by the
texture fetch unit of the GPU at the cost of a single memory
access. Coalesced memory access is achieved by partitioning
the memory transfers in blocks. The convolutions are cal-
culated with the 2D-FFT and IFFT routines included in the
NVidia CUFFT library. A tailor made GPU kernel computes
the projection (sum of planes) with high device occupancy
and maximizes memory coalescing. A second kernel computes
the integral in each intersection box (2-b-ii): each GPU thread
computes the integral (for the current camera position), for
a pair of points in the grid, so that the integrals for multiple
pairs are evaluated concurrently on the multi-processors of the
GPU. Each thread decides if the two PSFs intersect, then it
loads from the global memory of the GPU device the sections
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Fig. 2. Rotation-based algorithm for fast computation of the Fisher Information Matrix: 3-D schematic representation. Algorithm: 1) For each Gamma camera
(grey plane) position, the activity λ is resampled on a regular grid parallel to the camera plane and projected; 2) The grid points (yellow spheres) for the
Fisher Information Matrix (FIM) are reinterpolated on the same parallel grid; 3) For each pair of points in the FIM grid, the FIM element is updated with
the information relative to the current camera, which only depends on the region of the projection Z (black square) where the two PSFs Xi (red square) and
Xj (blue square) intersect.

of the PSFs that intersect and the projection data in the area
of intersection Z (see Fig. 2). Finally, the thread computes
the integral (2-b-ii) in the intersection box. After completion
of the partial FIM for a single camera, the process is repeated
for another camera, accumulating the elements of the FIM, as,
according to (9), information is additive. Computation times
are reported in table I. The GPU-accelerated algorithm for the
computation of the FIM has been integrated in the Niftyrec
reconstruction software toolbox [21] and has Matlab and
Python interfaces which enable real time scripting interaction
and full flexibility in the definition of the grid.

E. Image Quality Quantification for System Design

In this paragraph we introduce a figure of merit for SPECT
system design based on the trade-off between the bias and the
variance that can be achieved in the reconstruction of emission
tomograms.

Under the assumption that the system matrix H in (2) is
non-singular and imposing β = 0 in (4), the maximum likeli-
hood estimator is asymptotically efficient and asymptotically
unbiased. One approach to system design, for the unbiased
estimator, is to choose the parameters of the imaging system
that would produce the least error (minimum variance) in the
asymptotic case. This simply involves the inversion of the
FIM, to obtain the covariance of the estimator, and is referred
to as the Cramer-Rao bound.

However such approach is problematic because, in practice,
the full rank property of the system matrix (non-singularity) is
quite difficult to verify. This problem is addressed by including
the regularization penalty of equation (4) that leads to a strictly
convex cost function and makes F + β ·R in (6) invertible.
However bias is unavoidable for penalized estimators, so the
unbiased Cramer-Rao bound is not-applicable.

The approach that is widely used in emission imaging is to
define a local measure of the bias and to consider the trade-off
between bias and variance for the optimization of the system.
The MAP estimator is non linear in the projection data and
the properties of the estimator are object dependent. Therefore,
we study the bias properties of the estimator locally using the
Linear Local Impulse Response (LLIR) for the ith voxel [10]

(which in the following is referred to as Bias gradient B as
in [9]):

Bi(λ̂) = lim
δ→0

E[λ̂(ν(λ+ δei))]− E[λ̂(ν(λ)]

δ
(11)

This can be approximated using the implicit function theorem,
the Taylor expansion, and the chain rule as in [11]:

Bi(λ̂) ≈ FG · [FG + β ·RG]−1 · ei (12)

In [9] , a particular type of MAP estimator including an
appropriate space-variant quadratic smoothing prior has been
shown to achieve the Uniform Cramer Rao Bound (UCRB)
[9]. However the space-invariant prior further contributes to
space-variance in the bias gradient [15]. Therefore including
and designing an appropriate space-variant penalty function
lacks practical justification for the optimization of the design
of the imaging system.

To enable comparison between different systems at equal
bias gradient, we rely on an adaptation of (10) and (12) where
a post-smooth filter P is added to the equations:

Γ(λ̂G) ≈ P T ·[FG+β·RG]−1·FG·[FG+β·RG]−1·P (13)

Bi(λ̂) ≈ P T · FG · [FG + β ·RG]−1 · P · ei (14)

The penalty function R with a small regularization parameter
is included with the only purpose of making the cost function
strictly convex. Therefore the bias property of the estimator
is mainly determined by the filter function P . In order to
compare different systems, we first define a target bias gradient
function as an isotropic Gaussian P t (described by its Full
Width at half Maximum FWHMt). Consequently, for every
system, an anisotropic post-smooth filter P is designed, so
that the bias gradient Bi in (14) matches the target isotropic
Gaussian function P t. Designing a specific post-smooth filter
for every system under investigation, the noise properties of
the estimator can be compared at equal spatially uniform bias
gradient. The methodology applied for the design of the post-
smooth filter is presented in Appendix A. For more details on
how this method compares with UCRB methods, see [18].

We can now reduce (13) and (14) to a scalar measure
by taking into account only the variance and the Contrast
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Recovery Coefficient (CRC) for the voxel i, which we define
as V ari = Γii and CRCi = Bii (the CRC can be seen as
an alternative to the FWHM as a measure of bias [5]). Thanks
to the fixed resolution after post-smoothing, the CRC should
be more or less constant; the only parameter to optimize then
is the variance. In the rest of this paper, however, we consider
the Contrast to Noise Ratio (CNR) in voxel i as figure of merit
for image quality:

CNRi =
CRCi√
V ari

(15)

F. The Statistical Method for the Calculation of the Uncer-
tainty in the Reconstruction

The following reference method was adopted to calculate
the uncertainty of the estimation. We can characterize the sta-
tistical error in the estimation as the variance of λ̂d, computed
over a very long series of independent experiments, where the
expected measurement values ν are kept fixed, while the noise
is sampled from the Poisson distribution. If we consider the
hypothetical case where we perform an infinite sequence of
experiments, iterating to convergence the algorithm used to
maximize the MAP objective function, we obtain estimates
that are asymptotically normally distributed. In section IV
we show how, as the number of noise realizations increase,
the covariance closely resembles the approximated calculation
obtained from equation (10).

III. EXPERIMENTS

In the following we explore the use of the approximate an-
alytical method described in section II-C for the optimization
of the design of SPECT systems. The results obtained with the
approximate analytical method are compared with the circulant
approximation and with the reference method based on the
reconstruction of multiple noise realizations II-F. Before this
analytical approximation can be applied routinely to evaluate
and optimize a SPECT system design, we perform four sets of
experiments in order to validate our approximated calculation
of covariance (10) and bias gradient (12) in comparison with
reference method based on the reconstruction of multiple noise
realizations (section II-F).

For the reference method, a series of independent noise
realizations were computed using a pseudo-random Poisson
noise generator (of the IRT toolbox [40]), based on the
rejection sampling algorithm described at page 293 of [41].
The noisy data sets were reconstructed using an accelerated
GPU implementation of the One Step Late algorithm for MAP
estimation, implemented as part of the NiftyRec toolbox [21].
10000 iterations were performed. A smoothing prior with a
small weight β = 10−12 was included in the cost function.
The value of the regularization parameter was chosen after trial
and error, as a minimum value that guarantees convergence
within 10000 iterations, as we can see in Fig. 3, Fig. 4 and
Fig. 5 where the log-likelihood is plotted as a function of the
number of iterations. The calculation of the variance is based
on 10240 noise realizations. The number of noise instances
is a multiple of 1024 (10 times) as NiftyRec can process
concurrently up to 1024 reconstructions in order to make

TABLE I
COMPUTATION TIMES FOR THE CALCULATION OF THE FIM AND ITS

INVERSE.

g1 g2 g3
Grid Size 27648 6912 3072
NVidia GeForce GTX-285 348s 30s 19s

Reference method 18 hours

efficient use of the GPU. 10 repetitions were chosen in order to
obtain satisfactory images of variance. Though often variance
is calculated with much smaller sample size and number of
iterations, we found that such large numbers are necessary to
obtain a good estimate of the variance.

For the analytical method, the subsampled version of the
FIM has been calculated over three different grids of g1 =
27648, g2 = 6912 and g3 = 3072 points equally distributed
over the slice intersecting the point (or ROI) of interest and
the two neighbouring slices. We have observed that including
more than three slices did not change the results of our
experiments in case of full, subsampled or circulant FIM, since
the dependence across slices vanishes quickly with distance
along the axis of rotation. Therefore we have decided to use
three slices, in the experiments that follow, for computational
convenience. It should be noticed that grid g1 is fully sampled
over the three slices of interest and therefore, in the following,
the FIM with grid g1 will be referred to as the full FIM.
The variance images in Figures 7 (B, C, D), 8 (B, C, D), 9
(B, C, D), 12 (2nd, 3rd columns), are obtained by re-ordering
the diagonal of the covariance matrix Γ calculated as in (10).
For the full FIM (g1), the diagonal of Γ is simply reshaped to
a three dimensional matrix, whereas for grids g2 and g3 every
point of the diagonal of ΓG is allocated to the respective points
of the grid in the imaging volume. A trilinear interpolation is
then performed in order to facilitate the visual comparison
between the variance images obtained with the different grid
models. It should be noticed that a direct interpolation on
ΓG can not be performed. Variance images obtained with
the circulant approximation are also presented for comparison.
Every pixel of the images in Figures 7 (E), 8 (E), 9 (E), 12
(4th column), is calculated according to equation (8).
A more closely spaced grid gives a more precise estimation
of the variance but at the cost of increased computational
complexity of the estimation. The computation time needed
to calculate the FIMs and their inverse are presented in table
I.

We performed four different sets of experiments with dif-
ferent software phantoms and different system models. In
section III-A1 the calculation of the variance obtained from the
approximated analytical method (10) is validated for a realistic
phantom. In section III-A2 we employ the approximated
calculation of the covariance (10) and bias gradient(12) for
the optimization of the collimator aperture. A key challenge
in SPECT system design is the achievement of a reasonable
trade-off between resolution and detection efficiency. In order
to prove the reliability of the proposed approximation, we
show that different subsamples of the FIM yield the same
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optimal collimator aperture. In section III-A3, in order to em-
phasize the benefits of the proposed approximation of the FIM
with respect to the circular approximation, we investigate how
it can be employed to calculate the reconstructed image quality
in the case of region-of-interest reconstruction from truncated
projection data. In section III-B4 we employ the proposed
novel algorithm for the optimization of the camera trajectory
in an adaptive SPECT system. This experiment is also meant
to highlight the performance of the new method when used for
optimization of systems with a highly shift-variant response,
in comparison with other methods for the calculation of the
uncertainty, such as the circulant approximation. In the first
three experiments III-A1, III-A2 and III-A3 we simulate the
response of a standard SPECT system, whereas in III-B4 we
simulate the response of an adaptive system similar to the
commercially available D-SPECT system [12]. A description
of the two different systems is presented in the following.

A. Circular camera trajectory: the SPECT System

The SPECT system is based on a detector system of size
236.16 mm× 236.16 mm. The detector rotates over 360◦ at
a regular angular step of 2◦ around the center of the imaging
volume. The imaging volume dimensions are 96 × 96 × 12
cubic voxels of 2.4 mm. Photon counts are binned on a grid
of 96 × 96 pixels of 2.46 mm and the detector is placed
at a distance of 133 mm from the center. We consider a
parallel hole collimator consisting of a two-dimensional array
of square holes with septa thickness s = 0.2 mm, hole
diameter v, and length l. The diameter and the length of the
hole are left unknown since they define the collimator aperture.
The collimator aperture is characterized by the Point Spread
Function (PSF). The PSF for the parallel hole collimator
is here described with the analytical depth-dependent model
described by Anger [27]. This model expresses the FWHM of
the Gaussian at location x, y, z as:

FWHM(x, y, z) =

√
v2(CD(x, y, z) + l2)2

l22
(16)

where CD(x, y, z) is the distance between (x, y, z) and the
detector plane, l2 = l−2/µ and µ is the total linear attenuation
coefficient of the collimator material (µ = 22.7cm−1 for lead
at a photon energy of 140keV ). This formula was modified
from that presented by Anger [27], by considering that the
collimator septa length, l, should be reduced on both ends
by approximately 1/µ due to penetration effects [36]. We use
the acronym FWHM (without argument (x, y, z)) to denote
the collimator aperture that corresponds to the center of the
image space. The detector efficiency of a collimator system E
is closely related to the collimator aperture and can be defined
as the fraction of photons, emitted by a point source in the
volume, that are detected in the detector bins if there is no
attenuation. For the PH collimator with square holes, E is
estimated as:

E =
v4

4πl22(v + s)2
. (17)

The geometric efficiency is then proportional to the FWHM of
the PSF and is assumed to be independent of position. In this

Fig. 3. Log-likelihood curves as a function of number of iterations. The
different curves represent the log-likelihood for different collimator apertures:
FWHM = 5.9 mm to FWHM = 11.08 mm (from dark gray � to light
gray ∗). All the curves are scaled with respect to their maximum value.

study we assume that the detectors have a perfect absorption
efficiency and a perfect intrinsic detector resolution.

1) NCAT Phantom: The first experiment is performed
simply to validate the analytical method with a realistic
phantom. The phantom used for this experiment was a heart
phantom (NCAT) [35]. The activity within the phantom was
λ = 8kBq/cm3 in the left and right ventricle myocardium,
λ = 3.4kBq/cm3 in the left and right ventricle chamber,
λ = 0.9kBq/cm3 in the lungs and λ = 0.6kBq/cm3 in
the background. The collimator hole diameter is v = 1 mm,
collimator hole length l = 35 mm and collimator aperture has
FWHM = 7.89 mm.

2) Optimal Collimator Aperture: The second experiment
is performed to derive the relation between the optimal colli-
mator aperture FWHMopt and the target resolution Pt. The
phantom used was a uniform sphere positioned at the center of
the image space, with diameter D = 39 mm. The activity in
the sphere was set to λ = 8kBq/cm3 and in the background
it was set to λ = 2.4kBq/cm3. During the experiment the
collimator aperture varies from FWHM = 5.9 mm to
FWHM = 11.08 mm. The target resolutions are set to
FWHMt = 12, 14 and 16 mm. The CNR for the central
point of the sphere is calculated as in (15).

3) Truncated Projection Data: In this experiment we in-
vestigate the effect on image variance for region-of-interest
reconstruction from truncated projection data. Truncation is
caused by a limited detector size. Only a certain number of
detector bins w are used to measure data. Note that the Field
Of View (FOV) in this truncation situation forms a cylinder
whose radius depends on the level of truncation. The phantom
was a uniform sphere positioned in the center of the image
space, with diameter D = 24.6 mm. The uniform background
was a cylinder positioned in the center of the image space, with
radius 106.3 mm and height 29.5 mm. The activity in the
sphere was set to λ = 8kBq/cm3 and to λ = 4.4kBq/cm3

in the background. The size and the position of the sphere
has been chosen in order to have the sphere always in the
FOV, whereas the activity in the background is gradually more
and more outside the FOV with increasing truncation level.
During the experiment, the FOV diameter varies from w = 96
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Fig. 4. Log-likelihood curves as a function of number of iterations. The
different curves represent the log-likelihood for different levels of truncation.
Truncation is caused by a limited detector size. The FOV diameter varies from
w = 96 to w = 36 (from dark gray � to light gray ∗). All the curves are
scaled with respect to their maximum value.

to w = 16 (from 236.2 mm to 39.4 mm). We calculate the
variance for a plane intersecting the central point in the sphere
and the CNR for a voxel positioned in the center of the sphere.

B. Effect of the acquisition trajectory on the uncertainty of
the measurement: the adaptive SPECT

The trajectory of the gamma camera has a profound effect
on the overall uncertainty of the measurement and on how
the uncertainty is distributed throughout the imaging volume.
Moving the camera along a circular trajectory at constant
speed around the center of the imaging volume produces,
intuitively, optimum retrieval of the information when the
object is (roughly) uniform and the PSF ideally not depth-
dependent. Changing the trajectory, just like for any other
parameter of the acquisition system, the interdependence of
the information changes [26]. We consider an adaptive SPECT
system similar to the D-SPECT [12], as an example of
a system in which the camera trajectory can be modified
in response to the characteristics of the underlying activity
distribution. In the following we refer to this adaptive SPECT
system as the pseudo D-SPECT (pD-SPECT).

4) Comparison of different acquisition protocols for an
adaptive SPECT system: The main aim of this set of experi-
ments is to compare different acquisition protocols for the D-
SPECT system and to investigate the influence of the presence
of activity outside the ROI in the optimization.

The commercial D-SPECT camera system is based on 9
collimated detector columns arranged in a curved configura-
tion in order to conform to the shape of the left side of the
patient chest (Fig. 6 A). Each detector column is then placed
at a different distance from the center of the imaging volume
(Table II). The software phantom was a uniform sphere posi-
tioned at a mean distance from the detectors of 205 mm. The
sphere was then positioned in the half of the FOV closest to
the detectors, where there is complete tomographic sampling.
The uniform background was a cylinder positioned in the
center of the image space, with radius 106.3 mm and height
29.5 mm. The activity in the sphere was set to λ = 8kBq/cm3

and the background the activity was set to three different

Fig. 5. Log-likelihood curves as a function of number of iterations. The
different curves represent the log-likelihood for different scanning patterns
of a pD-SPECT system. The scanning pattern is defined by its time ratio S
which varies ranging from S = 0.45, to S = 0.9 (from dark gray � to light
gray ∗). All the curves are scaled with respect to their maximum value.

levels λBK1 = 0.9kBq/cm3, λBK2 = 2.2kBq/cm3 and
λBK3 = 4.4kBq/cm3. The image volume dimensions are
96× 96× 12 cubic voxels of 2.46 mm.

Each of the nine detector blocks is composed of 16 × 96
individual pixels with a size of 2.46 mm in both dimensions,
resulting in a total detector surface of 39.36 mm×236.16 mm.
The design of the pD-SPECT differs from the commercially
available D-SPECT in both the design of its collimators and
the specifications of the acquisition protocol. Each detector
block is equipped with a PH collimator with hole diameter
v = 1.03 mm and collimator length l = 35 mm. The FWHMs
which depend on the distance of every detector from the center
of the FOV, are presented in Table II. During acquisition, each
of the nine individual detectors rotates independently around
its own central axis in order to cover the whole Field Of
View (FOV). The adaptive dynamic sequence consists of two
options:

a) Open Sweep Acquisition: Each detector block rotates
110◦ in order to cover the whole FOV, performing 60 regular
angular steps. In order to obtain a more complete tomographic
sampling, the complete set of detectors is translated by 9◦ and
the open sweep acquisition is performed for a second time.

b) Region of Interest Acquisition: After a preliminary
sweep mode scan, the operator defines a ROI contour. The
sequence of acquisition is adapted in order to minimize the
uncertainty in the ROI. The search of optimum scanning
sequences is constrained by the following algorithm: each
detector head covers the full angular span of ϕ3−ϕ0 = 110◦,
performing 60 angular steps δϕ (Fig. 6 B):

δϕ =


t((ϕ3−ϕ2)+(ϕ1−ϕ0))

T (1−S) if ϕ0 < ϕ ≤ ϕ1

(ϕ2−ϕ1)
TS if ϕ1 < ϕ ≤ ϕ2

t((ϕ3−ϕ2)+(ϕ1−ϕ0))
T (1−S) if ϕ2 < ϕ ≤ ϕ3

(18)

where T is the total scanning time, t = T/60 is the constant
scanning time for every angular step, ϕ1 and ϕ2 are the angles
subtended by the rays intersecting the center of the detector
and tangent to the ROI contour. The complete set of detectors
is then translated by 9◦; a new set of 60 angular steps is defined
and the region centric acquisition is performed a second time.



9

TABLE II
PD-SPECT SYSTEM PARAMETERS

Detector block 1 2 3 4 5 6 7 8 9
Detector distance (mm) 228 203 205 229 248 256 254 249 262
FWHM (mm) 7.93 7.18 7.25 7.97 8.54 8.79 8.70 8.56 8.96

Fig. 6. A (left) position of pD-SPECT detectors - B (right) angular movement
of a single pD-SPECT detector. Angular span of the FOV: ϕ0 −ϕ3. Angular
span of the ROI: ϕ1 − ϕ2.

The only parameter defined in order to describe the scanning
pattern is the time ratio S that each detector spends acquiring
data from the ROI rather than from the surrounding region.
We perform, for each of the three different backgrounds in
the object, a set of experiments in which the scanning pattern
varies ranging from S = 0.45, to S = 0.9 (where S = 0.45
is the time ratio for the open sweep modality). The CNRs
are calculated for the central point of the sphere at a constant
target resolution FWHMt = 12 mm.

IV. RESULTS

1) NCAT Phantom: The calculated variance images for the
NCAT phantom are shown in Fig. 7. Fig. 7 A shows the
variance image obtained from the reconstruction of 10240
noisy projection data sets. Fig. 7 B, C, D show the cor-
responding images calculated with the full FIM for grid
g1 = 27648 and with the subsampled Fisher Information for
grid g2 = 6912 and g3 = 3072 respectively. Fig. 7 E shows
the variance image calculated with the circulant approximation
of the FIM. Fig. 7 F shows the horizontal profiles. From
these images we can see how both the method based on the
subsampled Fisher Information Matrix and the method based
on the circulant approximation of the FIM approximately
predict the variance of the MAP estimator, presenting minor,
but obvious, differences with respect to the variance obtained
with the reference method. The variance image obtained from
the reconstruction of multiple noise realizations is rather noisy,
due to the finite number of repeated experiments (10240). The
variance images predicted with the FIM method, generally
speaking, are smooth because neighbouring voxels are affected
by similar levels of noise. However a sparser grid gives a
more approximated estimation, as we can see in Fig. 7 E. In
fact, a fundamental limitation of the subsampled FIM approach
is that fine detail is being lost as the grid becomes more
sparse. The way the algorithm has been designed permits

the degree of approximation in the estimation to be defined
by the user. Therefore a trade-off between computational
complexity and reliability of the estimation of the covariance
matrix arises. We noticed that, for such a complex phantom,
performing the calculation with a grid g4 = 1728 points or
less, would lead to incorrect results. The minimum number
of grid points necessary to obtain a reliable estimation of
the covariance depends on the characteristics of the system
under investigation (for a discussion on the selection of the
number of grid points, see section V). Both the method based
on the subsampled FIM and the method based on the circulant
approximation of the FIM are somewhat less accurate near the
edge of the finite support used in image reconstruction, for
unknown reasons. This effect (which has been reported also
in another study [37]) can lead to a discrepancy exceeding
10% and it is more noticeable, in case of low level of activity,
in the off-center voxels of the phantom [25].

2) Optimal Collimator Aperture: Calculated variance im-
ages for a uniform sphere phantom at a collimator aperture
FWHM = 7.89 mm are displayed in Fig. 8. The variance
image obtained from the reconstruction of 10240 noisy data
sets, from the full FIM method, from the subsampled FIM
method with different grids and from the circulant approxima-
tion of the FIM method are again in good agreement, as we can
see from the horizontal profiles in Fig. 8 F. These results show
that the off-center voxels have a lower variance than the central
voxels of the phantom. This well-known observation [22] is
explained by the fact that, with a SPECT system, some of the
planes through off-center voxels have less intersection area
with the phantom and are less multiplexed with neighbouring
voxels than planes through the central voxels.

Fig. 10 shows the optimal collimator aperture for the central
point of the sphere obtained with the reference method, with
the full FIM (grid g1), with the subsampled FIM method
for grid g2 and grid g3 and with the method based on the
circulant approximation. The optimal apertures are plotted for
the three different target resolutions Pt = 12 mm, 14 mm
and 16 mm. From the three plots, we can see how we obtain
the same maximum CNR (so in turn, minimum variance) with
the reference method, with the full FIM, with the two different
subsamples of the FIM and with the circulant approximation
method. We can see also how the optimal aperture varies
almost linearly in relation with the target resolution imposed
in the reconstruction. Similar results were presented in another
study [4] which claims that the FWHM of the parallel hole
collimator aperture that yields the minimum variance, equals
the spatial resolution divided by

√
2.

3) Truncated Projection Data: Fig. 9 shows variance im-
ages from truncated projection data with a FOV diameter
w = 36. The variance image obtained from multiple noisy
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Fig. 7. SPECT: variance images for the NCAT phantom obtained with a standard SPECT system. A (first column) - reference method (variance image obtained
from the reconstruction of 10240 noisy projection data sets), B (second column) - Full Fisher Information-based method with grid g1, C (third column) -
Subsampled Fisher Information based method with grid g2, D (fourth column) - Subsampled Fisher Information based method with grid g3, E (fifth column)-
Variance image obtained with the “Circulant Approximation” method. F (sixth column)- Variance profiles at the center of the heart: reference method (black
line - ∗), grid g1 (blue line - +), grid g2 (red line - ◦), grid g3 (green line - ×), circulant (cyan line - �).

Fig. 8. SPECT: variance images of a uniform sphere obtained with a standard SPECT system. A (first column) - reference method (variance image obtained
from the reconstruction of 10240 noisy projection data sets), B (second column) - Full Fisher Information-based method with grid g1, C (third column) -
Subsampled Fisher Information based method with grid g2, D (fourth column) - Subsampled Fisher Information based method with grid g3, E (fifth column)-
Variance image obtained with the “Circulant Approximation” method. F (sixth column)- Variance profiles at the center of the heart: reference method (black
line - ∗), grid g1 (blue line - +), grid g2 (red line - ◦), grid g3 (green line - ×), circulant (cyan line - �).

Fig. 9. SPECT interior tomography: variance images for a uniform sphere phantom obtained with truncated projection data with FOV diameter w = 36.
A (first column) - reference method (variance image obtained from the reconstruction of 10240 noisy projection data sets), B (second column) - Full Fisher
Information-based method with grid g1, C (third column) - Subsampled Fisher Information based method with grid g2, D (fourth column) - Subsampled
Fisher Information based method with grid g3, E (fifth column)- Variance image obtained with the “Circulant Approximation” method. F (sixth column)-
Variance profiles at the center of the heart: reference method (black line - ∗), grid g1 (blue line - +), grid g2 (red line - ◦), grid g3 (green line - ×), circulant
(cyan line - �).

data sets and the variance images obtained from the full FIM
and the subsampled FIM method with different grids are in
good agreement. For the voxels outside the FOV, the variance
increases considerably in respect to the non truncated case.
Outside the FOV, in fact, we do not have full sampling,
since we acquire data from that region only at certain angular
positions of the camera. The variance image obtained with the
circulant approximation of the FIM method is displayed in Fig.
9 E. From this image, we can notice an increase in variance in
the voxels outside the FOV with respect to the non-truncated
case. However the aforementioned effect is less accentuated
with respect to the increase in variance estimated with the
full FIM method and with the subsampled FIM method in the
same region. The horizontal profiles are shown in Fig. 9 F.

In Fig. 11 the CNR for a voxel in the center of the
sphere is plotted for different FOV diameters w = 96, · · · , 16.
The calculation of the CNR is obtained with the reference
method (reconstruction of 1024 noisy data sets), with the
novel approach for the approximation of the FIM (with grid

of g1 = 27648 (full FIM) , g2 = 6912, g3 = 3072 points)
and, for comparison, with the circulant approximation. Even
if Region Of Interest (ROI) reconstruction from truncated
projections data can lead to nearly unbiased reconstruction
in a well-sampled ROI (as demonstrated in [38] [39]), we
noticed that a decrease in FOV size leads to an increase
in variance (decrease in CNR), not only outside the FOV
but also inside it. For this specific experiment we observe a
decrease in CNR, for a voxel in the center of the sphere, of
8% compared to the non-truncated case, using the reference
method based on multiple noise realizations for the calculation
of the variance. An important observation is that we see no
effect due to truncation with the circulant approximation of
the FIM (as stated in [4]) whereas with the sumbsampled FIM,
since we account for the interdependence between the voxels,
we see a decreased CNR (increased variance) with increased
level of truncation. This is an important feature of the method
that we have introduced, because it enables the optimization
of systems for interior imaging, which is not possible with
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Fig. 10. SPECT: CNRs for different collimator apertures (from FWHM =
5.9 mm to FWHM = 11.08 mm), obtained with the reference method
(black line - ∗), with the method based on the Fisher Information with grid
g1 (blue line - +), with grid g2 (red line - ◦), grid g3 (green line - ×) and
with the circulant approximation method (cyan line - �). Optimal collimator
apertures are calculated for target resolutions Ptarget = 12 mm (A - top
figure), 14 mm (B - central figure) and 16 mm (C - bottom figure).

existing methods.
4) Comparison of different acquisition protocols for an

adaptive SPECT system: Figure 12 shows the calculated
variance for a slice intersecting the center of the sphere for
time ratio S = 0.45 and 0.85 (from top to bottom) and
background set at λ = 2.2kBq/cm3 . The first column shows
the results obtained for the reference method for multiple
noise realizations. The results obtained with the analytical
method based on the inversion of the FIM are shown in the
second column for the full FIM characterized by a grid of
g1 = 27648 points and in the third column for a subsampled
FIM characterized by a grid of g2 = 3072 points. Moreover
the results obtained with the circulant approximation of the
FIM method are shown in the fourth column. The profiles of
the image taken from a diagonal line intersecting the center
of the sphere are shown in the fifth column of figure 12.
From the images obtained with the reference method and with
the full and subsampled FIM, we see how with increasing
time ratio S, the variance increases in the region outside the
ROI whereas the variance in the uniform sphere decreases.
This intuitive effect on the uncertainty in the measurements

Fig. 11. SPECT interior tomography: CNR for different levels of truncation
for a voxel in the center of the sphere. FOV diameter (from left to right)
w = 96, · · · , 16. Black line (∗) - CNR obtained with the reference method.
Blue line (+) - CNR obtained with full FIM method with grid g1. Red line
(◦) - CNR obtained with subsampled FIM method with grid g2. Green line
(×) - CNR obtained with subsampled FIM method with grid g3. Cyan line
(�) - CNR obtained from the circulant approximation method.

is due to the fact that, with an open sweep acquisition, the
entire FOV is scanned uniformly, whereas with increasing
time ratio S more time is spent on the ROI at the expense of
acquiring less information on the surrounding region. Though
the information that is ultimately acquired about the ROI also
depends on the information that is acquired in the surrounding
region, the net effect of increasing S is to increase the overall
information about the activity in the ROI. Once again, for this
set of experiments, using the circulant approximation of the
FIM method, the aforementioned effect of increasing variance
outside the ROI with increasing time ratio S is less accentuated
with respect to the increase in variance obtained from the
full FIM method and also with respect to the increase in
variance obtained from the subsampled FIM method, since the
circulant method does not account for effects of long-distance
correlations.

The plots in Fig. 13 show the variation of CNR in the
central voxel of the sphere for different acquisition protocols
whose time ratio varies ranging from S = 0.45 to S = 0.9.
Three experiments were performed for different values of the
activity in the background λBK1 = 0.9kBq/cm3 (Fig. 13 A),
λBK2 = 2.2kBq/cm3 (Fig. 13 B) and λBK2 = 4.4kBq/cm3

(Fig. 13 C). From these plots it can be seen that the optimal
scanning pattern is sensitive to the level of activity in the
background. If the activity in the background is high with
respect to the activity in the ROI , an acquisition that more
uniformly scans the whole FOV may be preferable. This
effect is captured by the subsampled Fisher Information based
method with grid g1 and grid g2, whereas it is not captured
by the circulant approximation of the FIM method. The cir-
culant approximation method only accounts for the increased
sensitivity in the ROI with increased time ratio S; whereas it
does not account for the effects of long-distance correlations
due to a non-uniform scanning pattern.

It should be noted that the performance of the pD-SPECT
system with high level of background changes abruptly (by
approximately 50%) when the acquisition parameter changes
from S = 0.7 to S = 0.9 (Fig. 13,C), while the performance
of the SPECT system, with comparable level of background,
changes more uniformly across the range of the truncation
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Fig. 12. pD-SPECT: variance images of a uniform sphere (λ = 8kBq/cm3) and uniform background (λ = 2.2kBq/cm3) with scanning pattern time ratio
S = 0.45 (top row) and S = 0.9 (bottom row). First column - reference method (variance image obtained from the reconstruction of 10240 noisy projection
data sets). Second column - Fisher Information-based method with grid g1 (full FIM). Third column - Fisher Information based method with grid g2. Fourth
column - Variance image obtained with the circulant approximation method. Fifth column - Image profiles over a diagonal intersecting the center of the
sphere: reference method (black line - ∗), grid g1 (blue line - +), grid g2 (red line - ◦), circulant approximation method (cyan line - �)

parameter (Fig. 11). The pD-SPECT system parameterised
with S = 1 and the truncated single-camera SPECT system are
both presenting a data truncation problem. However, the two
systems differ substantially in that the SPECT camera rotates
by 360◦ around the center of the imaging volume, acquiring
information from all directions, while the 9 cameras of the
pD-SPECT system are essentially static for S = 1, acquiring
information from only 9 directions. The performance of the
D-SPECT system increases abruptly as one moves away from
S=1 due to the increased angular sampling.

V. DISCUSSION

In section II-A a cost function for the MAP Estimator λ̂ has
been defined. The absence of a closed analytical formulation
that expresses λ̂ explicitly in terms of ν makes it difficult
to study the properties (e.g. mean and covariance) of the
MAP estimator λ̂ defined in section II-A. For this reason,
in order to compare system designs, one has to compute
expensive simulations of thousands of reconstructions, as de-
scribed in section II-F. The computational complexity of such
simulations hinders the on-line optimization of the parameters
of adaptive imaging systems. Alternatively, an approximate
estimate of the covariance may be obtained via the FIM, as
expressed in (6).

In order to tackle the problem of the computational load
in calculating and inverting the FIM, it has been proposed
to approximate it with a circulant matrix (see section II-C).
The use of the circulant approximation has been explored for
the purpose of measuring the image quality in [9][10][5][15]
and for the purpose of system design optimization in [20][4].
The computational complexity of the reference method, in-
volving the reconstruction to convergence of thousands of
noise realizations, has precluded a systematic evaluation of
the effect and the limitations of the circulant approximation.
For a systematic characterization of the effect of the circulant
approximation on the estimates of the covariance matrix,

one would have to consider not only a single phantom, but
a class of objects. The problem is further complicated by
the choice of the regularization parameter β. In this paper
we have described a criterion for the choice of β and a
purpose-made GPU accelerated reconstruction software that
processes multiple reconstructions in parallel (see section
III), enabling the estimation of the reference variance in a
reasonably short time (see table I). The circulant FIM is
generally considered to yield a good approximation of the
covariance matrix for nearly shift-invariant systems, however
3-D SPECT systems are inherently shift-variant, even in case
of an ideal uniform object in the FOV. Comparison of the
variance (the diagonal of the covariance matrix) obtained from
the circulant approximation, with the full FIM and with the
reference statistical method, has highlighted certain pitfalls
of the circulant approximation. The first contribution of this
paper consists in having highlighted these effects, described
in section IV. The second and main contribution of this paper
is the introduction of a new approximation which relies on
a subsampled version of the FIM and that addresses the
shortcomings of the circulant approximation (section II-C).

In the following, the link between the shift-variance of
the system and the different approximations of the FIM is
illustrated with two examples. Figure 14 and Figure 16 show
the full Fisher Information Matrix (Figure 14 A, D and 16
A, D) the subsampled Fisher Information Matrix with grid g2
(Figure 14 B, E and 16 B, E) and the Circulant Fisher Matrix
(Figure 14 C, F and 16 C, F) for the two experiments described
respectively in section III-A2 and section III-A3. The number
of elements in the full FIM and in the circulant FIM equals
N2, whereas the number of elements of the subsampled FIM
(with grid g2) equals (N/2)2; therefore highly reducing the
computational burden in inverting the subsampled FIM. Since
the FIM is a very large matrix and therefore difficult to display,
we show the FIMs for the 2-D case. Thus, the full FIM has
g1 = 9216 points and the subsampled FIM has g2 = 2304
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Fig. 13. pD-SPECT: CNRs for different scanning patterns, obtained with the
reference method (black line - ∗), with the Subsampled Fisher Information
based method with grid g1 (blue line - +), with the Subsampled Fisher
Information based method with grid g2 (red line - ◦) and with the circulant
approximation method (cyan line - �). The time ratio ranges from S = 0.45
to S = 0.85. The optimal time ratios are calculated for different level of
background λBK1 = 0.9kBq/cm3 (A - top figure), λBK2 = 2.2kBq/cm3

(B - central figure) and λBK2 = 4.4kBq/cm3 (C - bottom figure). The target
resolution Ptarget = 12 remains the same for all the experiments.

points. It should be noticed that solving equation (8), for a
voxel of interest i, is equivalent to the inversion of a column
of the FIM as if the full FIM were a block circulant matrix
with circulant blocks (for the 2-D case), which we refer to as
F̃ . This is equivalent to creating a new matrix by extracting the
i-th column from the full FIM, F̃

i
= F i, and then obtaining

from this vector the remaining columns of F̃ by an appropriate
circulant shift in 2D so that the peak of F i becomes centered
at the voxel corresponding to each column index. Therefore
we display, in Fig. 14 C, F and 16 C, F, the circulant Fisher
Matrix for the calculation of the variance of a voxel of interest
i in the center of the FOV; whereas we display in Fig. 14 A,
D and 16 A, D the FIM for all the points in the FOV and in
Fig. 14 B, E and 16 B, E the FIM for the points of grid g2.
As already described in section II-D, all elements of the
subsampled FIM at the grid points are calculated exactly,
accounting for the acquisition geometry and for the object. We
can see, in fact, how in the subsampled FIM we account for the
system response and for the object dependency, whereas with

the circulant approximation method we make the assumption
that the FIM (and therefore the system response) is shift
invariant.
However, what is ultimately of interest is the inverse of the
FIM (the covariance matrix). Figure 15 and Figure 17 show
the covariance matrix calculated from the full FIM (Figure
15 A and 17 A), the covariance matrix calculated from the
subsampled FIM with grid g2 (Figure 15 D and 17 D) and the
covariance matrix calculated using the circulant approximation
method (Figure 15 B and 17 B) for the two experiments
described respectively in section III-A2 and III-A3. Fig. 15 B
and Fig. 17 B display the covariance matrix obtained by row-
by-row inversion of the circulant FIM for the 2-D system,
where each column of the matrix is evaluated separately
using equation (8). The resulting covariance matrix is spatially
variant (non circulant) but clearly does not show the same
structure as the full FIM inverse in Fig. 15 A and Fig. 17
A. We can therefore deduce that the circulant FIM can not
incorporate the effects of shift-variance, since it does not
account for the effects of data truncation or missing data. A
direct visual comparison between the inverse of the full FIM
and the inverse of the subsampled FIM is arduous, because
of the different size of the two matrices. Hence we show,
in Figures 15 C and 17 C, two matrices which are obtained
selecting the voxels at the locations of the inverse of the full
FIM that correspond to locations of the elements of grid g2
and then rebinning the selected voxels in a smaller matrix
of size (N/2)2. Clearly, the inverse of the subsampled FIM
will not be exact at the grid points because of the missing
off-diagonal FIM entries between the grid points, however the
matrices in 15 C, 17 C and 15 D, 17 D exhibit the same
structure. This encompasses the capability of the method to
incorporate non-stationary system models and effects of long-
range correlations.

The sub-sampled FIM trades off computational complexity
and accuracy of the estimation, enabling the adaptation of the
accuracy of the estimation based on the available computa-
tional resources. When sufficient resources are available, the
GPU-accelerated software described in section II-D can com-
pute the covariance matrix exactly on a grid g1. One important
advantage of the scalable sub-sampled FIM approximation is
that the algorithm provides an estimate of the full covariance
matrix, though sub-sampled, accounting for the global interde-
pendence between the variables of the tomogram. This enables
the use of global metrics for system design optimization. In
other fields of imaging, where the lesser dimensionality of
the parameter space enables the storage and inversion of the
full FIM, a wide range of global optimality criteria has been
explored, such as D-optimality [42] and I-optimality [43]. In
the future, a global figure of merit which accounts for the
off-diagonal entries of the FIM will be investigated.

Evaluation of the effect of sub-sampling, however, is com-
plicated by the trade-off that arises. It is not possible to
define an absolute criterion for the choice of the sub-sampling
scheme. The contributions to the FIM at a given camera
position, for a given pair of grid points, arise only from overlap
in the projected PSF from those points (as shown graphically
in Figure 2). The implication is that the grid points must be
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Fig. 14. Fisher Information Matrix for the experiment in section III-A2. Comparison between full FIM, subsampled FIM and Circulant FIM. A (top left) -
Full FIM, grid g1 = 9216 points. B (top central) - subsampled FIM, grid g2 = 2304 points. C (top-right) - Block Circulant with Corculant Blocks FIM for
a voxel of interest i in the center of the FOV only. D (bottom left) - A zoom-in part of A displaying multiple (4× 4) blocks. E (bottom central) - A zoom-in
part of B displaying multiple (4× 4) blocks. F (bottom right) - A zoom-in part of C displaying multiple (4× 4) blocks.

close enough to ensure there is overlap between the projected
PSFs. This condition depends on many factors, including: the
image volume size, the voxel size, the size of the PSF, the
camera trajectory etc. This condition refers to accuracy of the
FIM entry for those two points, but does not apply to accuracy
of its inverse, which will suffer from missing points even if
the “overlapping PSF” condition is met. Therefore, a general
criterion to define a relationship between the subsampling and
the reliability of the variance estimation, can not be provided.
This criterion depends in fact on the properties of the specific
system.

The sub-sampled FIM formulation and the software tool
described in this paper may be employed for the optimization
of a range of design parameters of emission imaging systems.
However only three guidelines can be given, so far, for the
choice of the sub-sampling scheme. The first is trivially to
adopt the most dense grid for the available computational
resources. The second is to restrict the grid volume to a
specific region of the FOV, in case we know in advance that
activity is present only in that region of interest. The third
refers to adaptive imaging systems, where the system adapts
during acquisition, in response to the projection data, and
therefore where the computational resources are limited by
the real-time requirements. For a specific adaptive imaging
system and for the specific parameter we want to modify
during acquisition, a sufficient condition of optimality needs to
be defined. This condition accounts for the trade-off between
accuracy of the estimate and computational complexity. Once
a sufficient condition of optimality is defined, the subsampling
model should be chosen prospectively by comparing the
estimates of the optimum scanning parameters for different
sub-sampling models, with the parameters obtained from the

reference method.
In section IV we prove that the new methodology well

predicts how a variation in the system parametrization affects
the reconstructed image quality. A validation for the subsam-
pled Fisher Information-based variance calculation method is
presented in the following. For every experiment presented in
section III, the variance obtained with the reference statistical
method is plotted with respect to the variance predicted with
the Fisher Information-based method, for grid g1 = 27648
points, grid g2 = 6912 points, grid g3 = 3072 points, grid
g4 = 1728 points and grid g5 = 1106 points. A least square
fitting is performed through the data. The regression coeffi-
cients, the intercepts of the line, the correlation coefficients
and the standard error of the estimate for every experiment are
presented in Table III. The sufficient conditions we suggest to
obtain a reliable estimate, are that the correlation coefficient
between the variance obtained with the reference statistical
method and the variance obtained with the subsampled FIM
ranges from 0.9 to 1. Also we suggest that the Standard Error
of the Estimate should not exceed 0.001. Grid g1 = 27648
points, grid g2 = 6912 points and grid g3 = 3072 points
satisfy the sufficient condition we suggest for a reliable esti-
mate of the variance. All validation points for the experiment
in section III-A1 for those three grid models are shown in
Figure 18, which plots the standard deviation calculated with
the reference method with respect to the standard deviation
predicted with the subsampled FIM method. The solid line
was fitted to minimize the least squares distance between these
points.

The first assumption we make in (7), in order to calculate the
FIM, is that the reconstruction is locally linear, meaning that
the mean of the noisy reconstruction can be well estimated by
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Fig. 15. Inverse of the Fisher Information Matrix (covariance matrix) for the experiment in section III-A2. Comparison between the covariance matrix obtained
from the full FIM, the subsampled FIM and obtained by row-by-row inversion of the circulant FIM, where each column of the matrix is evaluated separately
using (8). A - Inverse of the Full FIM, grid g1 = 9216 points. B - Covariance matrix obtained by row-by-row inversion of the circulant FIM. C - Covariance
matrix obtained by selecting the voxels at the locations of the full FIM that corresponds to locations of the elements of the grid for the subsampled FIM. D
- Inverse of the subsampled FIM, grid g2 = 2304 points.

the reconstruction of noiseless data. This in turn means that to
calculate the FIM we need to know the activity distribution in
advance. Fessler and Rogers in [10] argued that even for real
noisy measurements we can predict the variance simply by
replacing ν with ν in (7). However this approximation may
be problematic and eventually cause convergence problems
when the scanning parameters are updated iteratively. The
optimization of adaptive systems is still an open problem and
needs further investigation.

The calculation of the uncertainty based on the Fisher
Information is restricted to problems where λ is a continuous
parameter in RN , thus, strictly speaking, its results are not
comparable with methods where non negativity constraints
are imposed on λ̂. However non-negativity constraints are
active relatively infrequently, so the Fisher Information method

can predict the properties of an estimator for most pixels
in a phantom. An approach to tackle this problem has been
presented by Li et al. [25].

In the methodology presented in this paper, a quadratic
penalty function with a small weight has been included
with the only purpose of enforcing the estimator to have a
unique solution and therefore to guarantee the regularized FIM
([F + βR]) to be invertible. However, since in practice we
subsample the matrix, the Hessian of the prior R reduces
to a diagonal matrix accounting for the regularization effects
only between the voxels in the grid. The use of the circulant
approximation of the FIM has been proposed in order to
evaluate the local effects of a penalty function on the bias
and variance for the shift-invariant system [15].

The experiments presented in this paper account for a
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Fig. 16. Fisher Information Matrix for the experiment in section III-A3. Comparison between full FIM, subsampled FIM and Circulant FIM. A (top left) -
Full FIM, grid g1 = 9216 points. B (top central) - subsampled FIM, grid g2 = 2304 points. C (top-right) - Block Circulant with Corculant Blocks FIM for
a voxel of interest i in the center of the FOV only. D (bottom left) - A zoom-in part of A displaying multiple (4× 4) blocks. E (bottom central) - A zoom-in
part of B displaying multiple (4× 4) blocks. F (bottom right) - A zoom-in part of C displaying multiple (4× 4) blocks.

TABLE III
VALIDATION OF THE SUBSAMPLED FIM IN COMPARISON WITH THE REFERENCE STATISTICAL METHOD

Ncat r2 SEE a b
g1 0.9933 2.03 e-04 -0.00413 0.97292
g2 0.9420 2.63 e-04 -0.00433 0.94042
g3 0.9392 3.04 e-04 -0.00454 0.93924
g4 0.9289 0.0046 -0.01069 0.91321
g5 0.9028 0.0061 -0.01803 0.89534

Sphere r2 SEE a b
g1 0.9871 1.62 e-04 -0.00158 0.97934
g2 0.9741 4.47 e-04 -0.00438 0.96172
g3 0.9470 5.72 e-04 -0.00868 0.93471
g4 0.9084 0.0018 -0.01422 0.89297
g5 0.8900 0.0025 -0.01896 0.82733

Inter r2 SEE a b
g1 0.9539 2.33 e-04 -0.0022 0.9529
g2 0.9417 4.90 e-04 -0.0047 0.9106
g3 0.9208 8.25 e-04 -0.0062 0.8687
g4 0.8942 0.0024 -0.0146 0.8174
g5 0.8296 0.0029 -0.0201 0.7955

Dspect r2 SEE a b
g1 0.95928 2.43 e-04 -0.00464 0.94834
g2 0.92837 3.47 e-04 -0.00646 0.89897
g3 0.89902 4.90 e-04 -0.01069 0.81060
g4 0.82983 0.0026 -0.01864 0.79574
g5 0.79345 0.0032 -0.02287 0.76643

Validation of the subsampled Fisher Information Matrix with respect to the Reference Statistical method. r2: Correlation Coefficent. SEE: Standard Error
of the Estimate. a:intercept of the least square fit. b: regression coefficient of the least square fit. Ncat: Section III-A1. Sphere: Section III-A2. Interior:

Section III-A3. Dspect: Section III-B4.

uniform attenuation map. If the attenuation map or model for
randoms and scatter are available, they can be included in
the calculation of the Fisher Information Matrix to study their
effect on image quality, although this is beyond the scope of
this paper.

VI. CONCLUSION

In this paper we introduce a novel algorithm for the opti-
mization of the system design in Emission Tomography. The
main aim of this new approach is to introduce a less dramatic
approximation of the FIM, that still takes into account the
global interdependence between the variables. We have applied

the method for the estimation of the optimal parameters of a
SPECT system, in comparison with the circulant approxima-
tion and in comparison with the reference statistical method
based on the reconstruction of multiple noise instances. In
particular, the novel method has been applied for the choice of
a collimator and the tuning of its parameters, and for the choice
of the scanning parameters of an adaptive SPECT system.

We have pointed out the shortcomings of the circulant
approximation for a range of optimization problems where
the system response is markedly shift-variant. In fact, the
subsampled FIM method has shown to enable the exploration
of design spaces previously precluded by the use of the
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Fig. 17. Inverse of the Fisher Information Matrix (covariance matrix) for the experiment in section III-A2. Comparison between the covariance matrix obtained
from the full FIM, the subsampled FIM and obtained by row-by-row inversion of the circulant FIM, where each column of the matrix is evaluated separately
using (8). A - Inverse of the Full FIM, grid g1 = 9216 points. B - Covariance matrix obtained by row-by-row inversion of the circulant FIM. C - Covariance
matrix obtained selecting the voxels at the locations of the full FIM that corresponds to locations of the elements of the grid for the subsampled FIM. D -
Inverse of the subsampled FIM, grid g2 = 2304 points.

circulant approximation, such as the evaluation of effects of
data truncation in interior tomographic imaging.

The recent development of adaptive SPECT systems has
introduced a class of optimization problems where the pa-
rameters of the imaging system may be modified in order
to image certain desired properties of the underlying object
and in order to adapt, during acquisition, in response to the
projection data. The D-SPECT is an example of such a system,
where the acquisition protocol (in terms of the trajectory of
the cameras) can be modified depending on the data acquired
during the scan. In order to adapt the response of the system
during acquisition, a set of different design parameters have to
be compared in real time. Thanks to the novel approximation
of the FIM and thanks to an efficient GPU implementation,
our novel algorithm for the estimation of the uncertainty,

drastically reduces the computational complexity and therefore
is a good candidate method for such optimization problems.
However, evaluation of the trade-off between computational
complexity and accuracy of the estimates for the optimum
parameters is an open problem and needs to be evaluated case
by case.

The method can be applied to a variety of systems and de-
sign parameters in emission computed tomography. The code
is available on-line (URL: http://niftyrec.scienceontheweb.net)
and is open source, in order to foster further development and
the evaluation of the algorithm for varying imaging conditions
and sub-sampling schemes.
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Fig. 18. Validation of the Fisher information-based standard deviation
calculation method for different grids. The standard deviation obtained with
10240 repeated simulations is plotted with respect to the standard deviation
predicted with the Fisher information-based method. A - grid g1, B - grid
g2 and C - grid g3 (from top to bottom). Spatial information is given by
the color of the dots. The light gray dots represent voxels which are more
distant from the rotation axis (off-center voxels); whereas the dark gray dots
represent voxels which are closer to the rotation axis (central voxels). A color
bar with the respective distance from the rotation axis (in mm) is displayed
for every plot.

APPENDIX A
DESIGN OF THE POST-SMOOTH FILTER

A desirable approach to system design optimization is to
choose the set of parameters of the imaging system that would
lead to the minimum variance in the estimation. However, two
different systems parametrizations can be compared by looking
at the covariance in the estimation, only if the two systems
present the same bias gradient properties.

Standard space-invariant penalties (4) yield to nonuniform
bias gradient properties in the reconstructed volume even for
space-invariant systems [16]. In order to address this problem
a post-smooth filter has been included in equations (14) and
(13). In these equations, a penalty function with a small
regularization parameter is added with the only purpose of
making the cost function strictly convex and therefore the FIM

invertible. Thus the bias gradient properties of the estimator
are determined mainly by the filter function P . The method
presented in equations (14) and (13) corresponds to iterating
the algorithm used to maximize the MAP objective function
(4) to convergence and then convolving the solution with an
anisotropic filter P in order to impose a fixed target bias
gradient Pt. This leads to uniform bias gradient properties
in the reconstructed volume.

Relying on this method a post-smooth filter P has to be
specifically designed for every system under investigation.
A method for the design of this filter is introduced in the
following.

Firstly, for every system η, the bias gradient functionBκ
i (λ̂)

(which is described by its FWHMη) is calculated as in
(11) or (12). An isotropic Gaussian target function P t is
defined so that FWHMt ≥ FWHMη (which implies that
post-smoothing is always needed to achieve the target bias
gradient). The post smoothing filter P is finally defined taking
into account the deviation between the bias gradient Bη

i (λ̂)
and the target isotropic Gaussian P t:

P[k] =

{
Pt[k]/Bηi [k] if R(Bηi [k]) ≥ 0.005
0 if R(Bηi [k]) < 0.005

(19)

where Pt , P and Bηi are the Fourier transforms of P t, P and
Bη
i (λ̂), k is the index of the elements in the Fourier domain

and R(·) denotes the real part of a complex number. Applying
the filter P to the bias gradient in (12) ensure that the final
bias gradient Bi(λ̂) in (14) equals P t. The only parameter to
optimize then, is the variance V ari = Γii with Γii calculated
as in equation (13).
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