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Abstract. This paper describes the use of Monte Carlo sampling for
tomographic image reconstruction. We describe an efficient sampling
strategy, based on the Riemannian Manifold Markov Chain Monte Carlo
algorithm, that exploits the peculiar structure of tomographic data, en-
abling efficient sampling of the high-dimensional probability densities
that arise in tomographic imaging. Experiments with positron emission
tomography (PET) show that the method enables the quantification of
the uncertainty associated with tomographic acquisitions and allows the
use of arbitrary risk functions in the reconstruction process.

1 Introduction

A tomographic imaging device produces an indirect measurement of a spatially-
dependent quantity. In the case of positron emission tomography, the interaction
of photons with the array of detection crystals provides information about the
rate of nuclear decay. In the early days, the tomographic reconstruction prob-
lem was addressed with a mathematical formulation arising in the context of
integral geometry: the Radon transform. Such idealized formulation provides an
exact inversion formula under the assumptions of noiseless measurements and
infinitesimally small detection elements. Starting with Shepp and Vardi [1], the
formulation of the reconstruction problem in the probabilistic framework has
enabled the development of algorithms that account for the uncertainty asso-
ciated to the measurements and employ accurate models of the characteristics
of the imaging devices. While in the context of tomographic imaging the re-
search community has focused on the development of algorithms to compute
a best guess of the unknown parameters, under the maximum likelihood (ML)
and maximum a posteriori (MAP) point estimation criteria, in the context of
low-level vision, starting with Geman and Geman [2], there has been a grow-
ing interest in the fully Bayesian approach to probabilistic reasoning, based on
Markov Chain Monte Carlo (MCMC) sampling. In contrast to point-estimation
criteria, which aim to maximize a density function, the fully Bayesian approach
aims to characterize the entire posterior probability density induced by the imag-
ing experiment. This enables the quantification of the uncertainty, as reported
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in recent applications in low-level vision, including image restoration [3], super-
resolution [4], optical-flow [5], etc. and in numerous applications in the field of
spatial statistics.

The computational complexity of the fully Bayesian approach via sampling
techniques has hindered its application in high-dimensional problems that present
strong non-local interdependence of the parameters, such as occurs in tomo-
graphic imaging due to the integral measurements along lines-of-response (LORs).
Recently, Girolami and Calderhead [7] have presented a new class of MCMC al-
gorithms, based on concepts of differential geometry, that exploit the natural
structure of probability density functions, achieving significantly improved com-
putational efficiency in high-dimensional problems with strongly correlated pa-
rameters. Such formulation is an extension of Hamiltonian Monte Carlo (HMC),
a sampling technique based on data-augmentation that was first introduced by
Duane et al. [8].

In this paper we describe a sampling algorithm for tomographic imaging
based on the formulation of Girolami and Calderhead [7]. We describe a strat-
egy that exploits the natural geometry of the probability density function and
the spatial structure of tomographic data to enable sampling from the high-
dimensional probability densities that arise in tomographic imaging. In the ex-
periments we highlight how the algorithm enables the quantification of uncer-
tainty and enables the use of risk functions in the reconstruction other than the
one that leads to MAP estimation.

2 Efficient sampling of tomographic imaging data

This section first introduces the imaging model for PET and gives an overview
of state-of-the-art Hamiltonian Monte Carlo; then it introduces the details of
the computational strategy that enables efficient sampling of tomographic data.

2.1 Imaging model and overall sampling procedure

PET imaging operates in the photon-limited regime. Discretizing the problem
on an image lattice, with discrete locations indexed by v, and letting d in-
dex the LORs; the probability density associated to the number of counts y =
[y1, . . . , yd, . . . , yD]T , conditional to the rates of emission x = [x1, . . . , xv, . . . , yN ]T ,
is a product of Poisson functions (see e.g. [1]):

p(y|x) =

D∏
d=1

e−[Ax]d [Ax]
yd
d

yd!
, (1)

where each element of the system matrix A = {adv} expresses the probability
that a pair of photons emitted from location v is detected in LOR d. Given a
prior probability density p(x), MAP estimation consists in finding the value of x
that maximizes the posterior probability density p(x|y) ∝ p(y|x)p(x). Numer-
ous algorithms have been reported for the maximization of the posterior, the
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most notables being the MLEM algorithm for non-informative uniform priors,
first described by Shepp and Vardi [1], and the one-step-late MAP-EM algorithm
for arbitrary log-differentiable priors, introduced by Green [6]. Rather than com-
puting the maximizer, the aim of the algorithm described in the following is to
characterize the full posterior density by MCMC sampling.

The samples are generated using a Markov Chain with equilibrium p(x|y),
obtained with the Metropolis-Hastings (MH) method. A new candidate is gen-
erated according to a proposal distribution q(x∗|xs) and accepted/rejected ac-
cording to the MH criterion. Letting s index the samples:

x∗ ∼ q(x∗|xs) (2)

u ∼ unif(0, 1) (3)

α = min

[
1,
p(x∗|y)q(xs|x∗)
p(xs|y)q(x∗|xs)

]
(4)

xs+1 :=

{
x∗ if u < α
xs if u ≥ α (5)

Under the MH criterion, if the proposal q(x∗|xs) is reversible (see e.g. [9]),
the sequence is guaranteed to be distributed, at equilibrium, according to the
probability density p(x|y). A usual choice is to let the proposal q(x∗|xs) be a
Gaussian distribution centered in xs, so that points closer to xs are more likely
to be visited next. Such choice makes the sequence of samples a random-walk,
producing high acceptance rate, but slow exploration of the space of the solu-
tions. In order to scale to high-dimensions, it is necessary to make large steps in
the proposal of the MH algorithm, while maintaining the probability of accep-
tance α high. Duane et al. [8] introduced a proposal based on data-augmentation
that, unlike random walk, uses the derivatives of the posterior density to allow
for large steps with high probability of acceptance. The technique consists in
introducing a variable z of the same dimensionality of x, independent from
x and normally distributed with covariance M (denominated mass-matrix ):
log p(x, z|y) = log p(x|y) − 1

2 log{(2π)N |M |} − 1
2z

TM−1z; the new candidate
is computed by drawing a random sample of z and moving along the iso-curve of
the joint probability density of x and z, described by the Hamiltonian equations
with fictitious time t:

z∗ ∼ N (z; 0,M) (6)[
dxi

dt = −∂ log p(x,z|y)
∂zi

=
[
M−1z

]
i

dzi

dt = ∂ log p(x,z|y)
∂xi

= [∇x log p(x|y)]i
(7)

This procedure generates samples from p(x, z|y). The samples from the marginal
density p(x|y) are obtained simply by discarding the samples of z. To discretize
the Hamiltonian dynamics, we employ the Stormer-Verlet leapfrog integrator,
employed by Duane and others. With NK integration steps (k = 1, . . . , NK):[

x∗k+1 = x∗k + εM−1 [z∗k + ε
2∇x log p(x∗k|y)

]
z∗k+1 = z∗k + ε

2∇x log p(x∗k|y) + ε
2∇x log p(x∗k+1|y)

(8)
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The Stormer-Verlet integrator is perfectly time-reversible (see Neal [9] and Giro-
lami [7]), therefore guaranteeing reversibility of the overal proposal function for
any positive definite mass matrix M . The choice of the mass-matrix and of the
integration step, addressed next, is critical for the performance of the sampler,
especially when the problem exhibits strong correlations [7].

2.2 Efficient sampling of tomographic data

While HMC is well established across multiple domains of computational science,
its application to tomographic imaging is challenging. First, the rate of emission
x is non-negative. We propose to impose non-negativity by simulating an elastic
boundary [9]:

x∗k+1
i := −x∗k+1

i

z∗k+1
i := −z∗k+1

i

}
if x∗k+1

i < 0 (9)

Second, the variables are strongly correlated, leading to high rates of rejection for
naive implementation of the HMC algorithm. As pointed out in the recent for-
mulation of Girolami and Calderhead [7], the Fisher Information Matrix (FIM)
of the likelihood term, defined, for the PET imaging model, as:

Hx : hij = − ∂2

∂xi∂xj
log p(x|y) =

D∑
d=1

adiadj yd(∑N
v=1 advxv

)2 , (10)

constitutes a piece-wise constant approximation of the metric tensor of the Rie-
mann structure of the parameter space. The choice M = H−1x yields effective
transitions that respect and exploit the geometry of the manifold, with the ef-
fect of increasing the performance of the sampler and making the choice of the
integration step ε non-critical.

In tomographic imaging, the FIM is too large to be evaluated numerically
and stored. However the spatial organization of the parameters allows for ap-
proximations. Assuming periodic boundary conditions, the FIM (10) is well ap-
proximated by a block-circulant matrix with circulant blocks (BCCB), an ap-
proximation commonly utilized, in various ways, in imaging applications [10].
By the Fourier diagonalisation properties of BCCB matrices:

HBCCB

x = F †ΛF (11)

Λ = diag(
√
NFh1), (12)

where F is the Discrete Fourier Transform matrix, F † its complex conjugate,
and h1 the first column of the FIM. Following (12), the BCCB approximation
reduces the matrix-vector multiplication in (8) to a convolution. Furthermore,
sampling the hidden variable z∗ becomes trivial using the method of the affine
transformation:

v ∼ N (0, I) (13)

z = F †Λ−
1
2v (14)
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The sample of z∗ is obtained by generating a vector of independent normal
variates and computing an inverse Fourier transformation (14).

A further approximation is introduced by computing the BCCB FIM just
once, for x equal to the MAP estimate (the ML estimate in case of uninformative
prior).

2.3 Summary of the algorithm

In summary, the algorithm consists in first constructing an estimate of the BCCB
FIM, obtained by performing an initial reconstruction with the MAP-EM algo-
rithm [6] and by computing the first column of the Hessian matrix and its Fourier
transform; then, at each iteration, the new candidate is obtained by sampling
the hidden variable z∗0 and integrating the Hamiltonian dynamics with elastic
boundary; the resulting candidate is accepted or rejected according to the MH
criterion for the joint density. Samples of z are discarded:

Fisher Information


xMAP = arg minx− log p(x|y)

hBCCB

1 : hBCCB
1j =

∑D
d=1

ad1adjyd

(
∑N

i=1 adix
MAP
i )

2

Λ = diag
(√

NFhBCCB

1

) (15)

New candidate


for s = 1 : NS

v ∼ N (0, I)

z∗0 = F †Λ−
1
2 (v)

x∗0 = xs−1

(16)

Hamiltonian dynamics



for k = 0 : NK
w = z∗k + ε

2∇x log p(x∗k|y)

x∗k+1 = x∗k + ε F †ΛFw
z∗k+1 = w + ε

2∇x log p(x∗k+1|y)

x∗k+1
i := −x∗k+1

i

z∗k+1
i := −z∗k+1

i

}
if x∗k+1

i < 0

(17)

Accept / reject


u ∼ unif(0, 1)

α = min
[
1, p(x

∗|y)
p(xs|y)e

− 1
2 (z
∗)TF †ΛFz∗+ 1

2 (z∗0)
T
F †ΛFz∗0

]
xs+1 :=

{
x∗ if u < α
xs if u ≥ α

(18)

With the BCCB approximation, the calculation of the gradient ∇x log p(x|y) =
∇x log p(x)+AT

(
y
Ax − 1̄

)
constitutes the most computationally expensive step,

entailing a projection (i.e. the simulation of the light propagation process) and a
back-projection. In the experiments that follow, in order to speed up the compu-
tations, we utilize a GPU-accelerated ray-tracer, achieving a rate of 50 gradient
evaluations per sec with a 643 image lattice, using a GPU NVidia Tesla K20.
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3 Experiments

The following experiments were performed to investigate the use of MCMC for
tomographic image formation. A healthy volunteer was administered 170 MBq
of FDG and scanned for 60 min with a Siemens Biograph mMR scanner. The
list-mode data was binned (discarding intra-ring coincidences, to reduce the
complexity) into three sinograms of duration 20 min, 40 min and 60 min since
the start of the acquisition. For each sinogram, an initial reconstruction on a
image lattice of 643 4 mm isotropic voxels was obtained by running the standard
MLEM algorithm until approximate convergence. The first column of the Hessian
matrix was computed, for each of the three measurements, using the initial
reconstruction. A total of NS = 5000 samples was drawn for each of the three
measurements using the uninformative prior (the number of samples was selected
empirically to obtain smooth marginals - Fig. 3). The number of integration steps
was set to NK = 10 and the integration step size was set empirically to ε = 0.08
to obtain acceptance rate near 0.5 – see in Fig. 1-(I). Fig. 1-(II-IV) provides a
visualization of the BCCB approximation for the 40 min experiment.

3.1 Uncertainty quantification

The samples of the posterior density can be used to quantify and visualize the
uncertainty associated to the tomographic measurement. Fig. 2(III) displays the
sample variance for the 40 min acquisition and Fig. 3 reports the histograms
of the samples relative to the three voxels A,B,C, indicated in Fig. 2(I), for the
three acquisition times. Providing uncertainty images such as 2(III) alongside
the reconstructions themselves is of direct potential clinical use in e.g., tumor
imaging to improve diagnosis/detection and interpretation of clinical images.
The plots in Fig. 3 demonstrate that the method allows one to capture the
increase of information obtained by increasing the scanning time – something
that conventional reconstruction algorithms based on point estimation cannot
provide. With (much) more powerful computers, this may ultimately provide
application-specific real-time feedback on when to stop scanning.

3.2 Decision theoretic criteria for image reconstruction

Decision theory allows us to obtain estimates that are optimal according to
certain risk criteria. In the decision theoretic framework, estimates are obtained

(I) (II) (IV)
1.0

0.0

0.5

Fig. 1. 20 min scan: (I) Acceptance rate; (II) Column of the FIM matrix, central
voxel; (III) Column of the FIM matrix, peripheral voxel; (IV) Column of the BCCB
FIM matrix, peripheral voxel.
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(I) (II) (III)
A

B
C

Fig. 2. 40 min scan: (I) MAP estimate - MLEM; (II) MMSE estimate (sample mean);
(III) Sample variance of each voxel’s marginal posterior distribution. A,B,C see Fig.3.
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Fig. 3. Histograms of the posterior samples for voxels A,B,C in Fig. 2. (I) 20 min
scan; (II) 40 min scan; (III) 60 min scan. Dotted lines indicate the MLE estimates
and dashed lines the MMSE estimates (i.e., the sample means). Note the reduction in
reconstruction uncertainty with longer acquisition time.

by minimizing the expected risk:

x̂ = arg min
x̃

∫
L(x̃− x) p(x|y) dx, (19)

where L(x̃ − x) represents the loss associated to choosing x̃ when the true un-
derlying value is x. The MAP estimation criterion corresponds to the particular
choice of the loss function that assigns the same penalty whenever the estimate
is not the true underlying variable and none otherwise: L(x̃ − x) = 1 − δx̃x,
where δ is the Kronecker Delta function. In this case, the minimum risk solu-
tion simplifies to x̂ = arg maxx̃ p(x̃|y). In general, however, the integral (19) is
intractable. The posterior sampling approach via MCMC enables us to approxi-
mate the integral in equation (19) as a finite sum over the samples, allowing the
definition of arbitrary risk criteria.

As an example we can perform image reconstruction by computing the Bayesian
minimum mean squared error estimate (MMSE), which assigns cost in propor-
tion to the distance of an estimate from the true value, in the sense of the
L2-norm: x̂ = arg minx̃

∫
‖x̃ − x‖2p(x|y) dx =

∫
x p(x|y) dx ≈ 1

NS

∑NS

s=1 x
s.

MMSE is equal to the mean of the posterior distribution and approximated by
the sample mean. Fig. 2 displays the central transverse slice of (I) the MAP
estimate (with non-informative prior) obtained with the MLEM algorithm it-
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erated until approximate convergence and of (II) the MMSE estimate obtained
by averaging the samples. The vertical lines in Fig.3 indicate the MMSE and
MAP estimates for voxels A,B and C, indicating how the two differ quantita-
tively. Note that sampling allows for more general reconstruction loss functions
than the two reported in Fig. 2, e.g., functions that in tumor detection penalize
false negatives more heavily than false positives. Exploring this further is left for
future work.

4 Conclusion

In this paper, we have introduced an algorithm for the posterior sampling of the
unknown parameters in tomographic imaging. The algorithm enables a number
of new possibilities. These include the quantification of the uncertainty of tomo-
graphic measurements and the possibility to define arbitrary risk criteria at a
very low level of the image formation process. We have described the algorithm
in detail and explored its use with simple experiments in PET. Future work
will evaluate the comparison of MAP estimation and reconstruction under the
MMSE criterion, will explore other risk criteria, and will consider the Bayesian
variational framework in search of solutions with increased computational effi-
ciency.
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